Research Article
BibTex RIS Cite

İnsansız Hava Araçlarında Titreşimlerin Rolü, Verimlilik Ölçüm Teknikleri ve Performans Etkileri

Year 2024, Volume: 6 Issue: 2, 72 - 80, 31.12.2024
https://doi.org/10.51534/tiha.1576860

Abstract

İnsansız hava araçlarındaki (İHA) titreşimler, uçuş kararlılığı, sensör doğruluğu ve yapısal bütünlük üzerinde önemli bir etkiye sahiptir. Bu titreşimlerin yaygın kaynakları arasında pervane dönüşü, motor dinamikleri ve aerodinamik kuvvetler bulunmaktadır. Bu titreşimlerin giderilmesi, İHA performansının ve operasyonel dayanıklılığının artırılması için gereklidir. Bu makale, titreşim dinamiklerini anlamak ve kontrol etmek için frekans analizi, mod analizi ve sonlu elemanlar analizi (SEA) gibi teorik ve deneysel titreşim analiz tekniklerini incelemektedir. Titreşim azaltma stratejileri, yapısal optimizasyon, uçuş kontrol sistemleri ve izolasyon sistemlerini içermektedir ve tüm bu stratejiler, stabilite ve dayanıklılığı artırmayı hedeflemektedir. Titreşim kaynakları ve etkilerinin doğru bir şekilde belirlenmesi ile etkili mühendislik çözümlerinin uygulanması sayesinde, İHA'lar daha yüksek performans, uzun operasyonel ömür ve yüksek hassasiyet ile stabilite gerektiren sektörlerde genişletilmiş uygulama olanaklarına kavuşabilir. Sonuç olarak, titreşim azaltma yalnızca performans iyileştirmesi için değil, aynı zamanda İHA teknolojisinin zorlu ortamlarda güvenilir şekilde kullanılabilmesi için kritik bir faktör olarak öne çıkmaktadır.

References

  • Abdulrahman Al-Mashhadani, M. (2019). Random vibrations in unmanned aerial vehicles, mathematical analysis and control methodology based on expectation and probability. Journal of Low Frequency Noise, Vibration and Active Control, 38(1), 143-153.
  • Ahmed, F., Mohanta, J., Keshari, A., & Yadav, P. S. (2022). Recent advances in unmanned aerial vehicles: a review. Arabian Journal for Science and Engineering, 47(7), 7963-7984.
  • Anton, S. R., & Inman, D. J. (2008). Vibration energy harvesting for unmanned aerial vehicles. Paper presented at the Active and passive smart structures and integrated systems 2008.
  • Arockiadoss, A. S., Novah, R. N., Sajal, K., Pratap, S. S., Premachandra, C., & Schilberg, D. (2024). Optimization of Monocoque Drone Frame Using Generative Design. Paper presented at the 2024 International Conference on Image Processing and Robotics (ICIPRoB).
  • Bashi, O. I. D., Hasan, W., Azis, N., Shafie, S., & Wagatsuma, H. (2017). Unmanned aerial vehicle quadcopter: A review. Journal of Computational and Theoretical Nanoscience, 14(12), 5663-5675.
  • Bektash, O., & la Cour-Harbo, A. (2020). Vibration analysis for anomaly detection in unmanned aircraft. Paper presented at the Annual Conference of the Prognostics and Health Management Society 2020.
  • Bolognini, M., Izzo, G., Marchisotti, D., Fagiano, L., Limongelli, M. P., & Zappa, E. (2022). Vision-based modal analysis of built environment structures with multiple drones. Automation in Construction, 143, 104550.
  • Butt, F., & Omenzetter, P. (2012). Evaluation of Seismic Response Trends from Long‐Term Monitoring of Two Instrumented RC Buildings Including Soil‐Structure Interaction. Advances in Civil engineering, 2012(1), 595238.
  • Cai, Y., Lam, E., Howlett, T., & Cai, A. (2020). Spatiotemporal analysis of “jello effect” in drone videos. Paper presented at the Advances in Human Factors in Robots and Unmanned Systems: Proceedings of the AHFE 2019 International Conference on Human Factors in Robots and Unmanned Systems, July 24-28, 2019, Washington DC, USA 10.
  • Chen, K., Meng, W., Wang, J., Liu, K., & Lu, Z. (2023). An investigation on the structural vibrations of multi-rotor passenger drones. International Journal of Micro Air Vehicles, 15, 17568293231199097.
  • Craig Jr, R. R., & Kurdila, A. J. (2006). Fundamentals of structural dynamics: John Wiley & Sons.
  • Cruz, C., & Miranda, E. (2017). Evaluation of damping ratios for the seismic analysis of tall buildings. Journal of structural engineering, 143(1), 04016144.
  • Eid, S. E., & Dol, S. S. (2019). Design and development of lightweight-high endurance unmanned aerial vehicle for offshore search and rescue operation. Paper presented at the 2019 Advances in Science and Engineering Technology International Conferences (ASET).
  • Foti, D., Ivorra, S., & Sabbà, M. F. (2012). Dynamic investigation of an ancient masonry bell tower with operational modal analysis: A non-destructive experimental technique to obtain the dynamic characteristics of a structure.
  • Fu, H., Liu, P., Zhang, Q., & Wang, Y. (2010). Vibration modal analysis of the active magnetic bearing system based on finite element. Paper presented at the 2010 IEEE International Conference on Mechatronics and Automation.
  • Ge, C., Dunno, K., Singh, M. A., Yuan, L., & Lu, L.-X. (2021). Development of a drone’s vibration, shock, and atmospheric profiles. Applied Sciences, 11(11), 5176.
  • Hafizi, Z., Aizzuddin, A., Halim, N., & Jamaludin, M. (2017). Modal properties investigation of car body-in-white with attached windscreen and rear screen. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  • Hassanalian, M., & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. Progress in Aerospace sciences, 91, 99-131.
  • Hii, M. S. Y., Courtney, P., & Royall, P. G. (2019). An evaluation of the delivery of medicines using drones. Drones, 3(3), 52.
  • Inman, D. J. (2017). Vibration with control: John Wiley & Sons.
  • Kim, I.-H., Jung, H.-J., Yoon, S., & Park, J. W. (2023). Dynamic Response Measurement and Cable Tension Estimation Using an Unmanned Aerial Vehicle. Remote Sensing, 15(16), 4000.
  • Kruithof, K. H., & Egeland, M. (2021). State estimator using hybrid kalman and particle filter for indoor uav navigation. University of Agder.
  • Legovich, Y., Maximov, Y., & Maximov, D. (2020). Quadrocopter vibration damping. Paper presented at the 2020 13th International Conference" Management of large-scale system development"(MLSD).
  • Meirovitch, L. (1980). Computational methods in structural dynamics (Vol. 5): Springer Science & Business Media.
  • Mohsan, S. A. H., Khan, M. A., Noor, F., Ullah, I., & Alsharif, M. H. (2022). Towards the unmanned aerial vehicles (UAVs): A comprehensive review. Drones, 6(6), 147.
  • Morales, R. M., Turner, M. C., Court, P., Hilditch, R., & Postlethwaite, I. (2014). Force control of semi‐active valve lag dampers for vibration reduction in helicopters. IET Control Theory & Applications, 8(6), 409-419.
  • Oakey, A., Waters, T., Zhu, W., Royall, P. G., Cherrett, T., Courtney, P., . . . Jelev, N. (2021). Quantifying the effects of vibration on medicines in transit caused by fixed-wing and multi-copter drones. Drones, 5(1), 22.
  • Ortiz Cayón, R. J. (2012). Online video stabilization for UAV. Motion estimation and compensation for unnamed aerial vehicles.
  • Perez, M., Billon, K., Gerges, T., Capsal, J.-F., Cabrera, M., Chesné, S., & Jean-Mistral, C. (2022). Vibration energy harvesting on a drone quadcopter based on piezoelectric structures. Mechanics & Industry, 23, 20.
  • Radkowski, S., & Szulim, P. (2014). Analysis of vibration of rotors in unmanned aircraft. Paper presented at the 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR).
  • Rahman, S., & Robertson, D. A. (2019). In‐flight RCS measurements of drones and birds at K‐band and W‐band. IET Radar, Sonar & Navigation, 13(2), 300-309.
  • Rasid, S. M. R., Mizuno, T., Ishino, Y., Takasaki, M., Hara, M., & Yamaguchi, D. (2019). Design and control of active vibration isolation system with an active dynamic vibration absorber operating as accelerometer. Journal of Sound and Vibration, 438, 175-190.
  • Redde, G., Kulkarni, P., Patil, P., Khedkar, D., & Chopade, J. (2018). Vibration analysis on frame and propeller of drone. International Journal of Advance Research in Science and Engineering, 7(5), 1-10.
  • Ren, Y., Zhu, F., Sui, S., Yi, Z., & Chen, K. (2024). Enhancing Quadrotor Control Robustness with Multi-Proportional–Integral–Derivative Self-Attention-Guided Deep Reinforcement Learning. Drones, 8(7), 315.
  • Shin, Y.-H., Kim, D., Son, S., Ham, J.-W., & Oh, K.-Y. (2021). Vibration isolation of a surveillance system equipped in a drone with mode decoupling. Applied Sciences, 11(4), 1961.
  • Sundararaj, S., Dharsan, K., Ganeshraman, J., & Rajarajeswari, D. (2021). Structural and modal analysis of hybrid low altitude self-sustainable surveillance drone technology frame. Materials Today: Proceedings, 37, 409-418.
  • Susilo, A. W., Achmad, W., Sri, N., & David, S. (2013). The effect of geometric structure on stiffness and damping factor of wood applicable to machine tool structure. International Journal of Science and Engineering, 4(2), 57-60.
  • Verma, & Collette. (2021). Active vibration isolation system for drone cameras. Paper presented at the Proceedings of the 14th International Conference on Vibration Problems: ICOVP 2019.
  • Verma, Lafarga, V., Baron, M., & Collette, C. (2020). Active stabilization of unmanned aerial vehicle imaging platform. Journal of Vibration and Control, 26(19-20), 1791-1803.
  • Verma, Pradhan, N. K., Nehra, R., & Prateek. (2018). Challenge and advantage of materials in design and fabrication of composite UAV. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  • Verma, M., & Collette, C. (2021). Active Vibration Isolation System for Drone Cameras. En: Proceedings of the 14th International Conference on Vibration Problems. Lecture in Mechanical Engineering: Springer, Singapore.
  • Vreugdenhil, C. B. (1964). Natural frequencies of free vertical ship vibrations. International Shipbuilding Progress, 11(122), 458-480.
  • Wang, Lu, Q., Zhang, K., & Shao, L. (2023). Design of micro-vibration suppression platform based on piezo-stack array intelligent structure. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237(4), 799-810.
  • Wang, X., Fan, W., Li, X., & Wang, L. (2019). Weak degradation characteristics analysis of UAV motors based on laplacian eigenmaps and variational mode decomposition. Sensors, 19(3), 524.
  • Yin, Q., Zhao, J., Liu, Y., & Zhang, Y. (2021). The approximate calculation of the natural frequencies of a Stockbridge type vibration damper and analysis of natural frequencies' sensitivity to the structural parameters. Mechanical Sciences, 12(2), 863-873.
  • You, C., & Zhang, R. (2019). 3D trajectory optimization in Rician fading for UAV-enabled data harvesting. IEEE Transactions on Wireless Communications, 18(6), 3192-3207.
  • Zhou, Y., Chang, S.-H., Wu, S., Cai, X. Y., Tang, L., & Xu, Z. (2018). FFT-ApEn analysis for the vibration signal of a rotating motor. International Journal of Acoustics & Vibration, 23(2), 203-207.

Role of Vibrations in Unmanned Aerial Vehicles, Efficiency Measurement Techniques, and Performance Impacts

Year 2024, Volume: 6 Issue: 2, 72 - 80, 31.12.2024
https://doi.org/10.51534/tiha.1576860

Abstract

Vibrations in Unmanned Aerial Vehicles (UAVs) significantly impact flight stability, sensor accuracy, and structural integrity. Common sources of these vibrations include propeller rotation, motor dynamics, and aerodynamic forces. Mitigating these vibrations is essential for enhancing UAV performance and operational durability. This article explores theoretical and experimental vibration analysis techniques, such as frequency analysis, modal analysis, and finite element analysis (FEA), to understand and control vibration dynamics. Vibration reduction strategies encompass structural optimization, flight control systems, and isolation systems, all aimed at improving stability and durability. By accurately identifying vibration sources and effects and implementing effective engineering solutions, UAVs can achieve higher performance, extended operational life, and greater precision, enabling broader applications in industries requiring high stability. In conclusion, vibration reduction is not only crucial for performance enhancement but also for ensuring the reliable use of UAV technology in challenging environments.

References

  • Abdulrahman Al-Mashhadani, M. (2019). Random vibrations in unmanned aerial vehicles, mathematical analysis and control methodology based on expectation and probability. Journal of Low Frequency Noise, Vibration and Active Control, 38(1), 143-153.
  • Ahmed, F., Mohanta, J., Keshari, A., & Yadav, P. S. (2022). Recent advances in unmanned aerial vehicles: a review. Arabian Journal for Science and Engineering, 47(7), 7963-7984.
  • Anton, S. R., & Inman, D. J. (2008). Vibration energy harvesting for unmanned aerial vehicles. Paper presented at the Active and passive smart structures and integrated systems 2008.
  • Arockiadoss, A. S., Novah, R. N., Sajal, K., Pratap, S. S., Premachandra, C., & Schilberg, D. (2024). Optimization of Monocoque Drone Frame Using Generative Design. Paper presented at the 2024 International Conference on Image Processing and Robotics (ICIPRoB).
  • Bashi, O. I. D., Hasan, W., Azis, N., Shafie, S., & Wagatsuma, H. (2017). Unmanned aerial vehicle quadcopter: A review. Journal of Computational and Theoretical Nanoscience, 14(12), 5663-5675.
  • Bektash, O., & la Cour-Harbo, A. (2020). Vibration analysis for anomaly detection in unmanned aircraft. Paper presented at the Annual Conference of the Prognostics and Health Management Society 2020.
  • Bolognini, M., Izzo, G., Marchisotti, D., Fagiano, L., Limongelli, M. P., & Zappa, E. (2022). Vision-based modal analysis of built environment structures with multiple drones. Automation in Construction, 143, 104550.
  • Butt, F., & Omenzetter, P. (2012). Evaluation of Seismic Response Trends from Long‐Term Monitoring of Two Instrumented RC Buildings Including Soil‐Structure Interaction. Advances in Civil engineering, 2012(1), 595238.
  • Cai, Y., Lam, E., Howlett, T., & Cai, A. (2020). Spatiotemporal analysis of “jello effect” in drone videos. Paper presented at the Advances in Human Factors in Robots and Unmanned Systems: Proceedings of the AHFE 2019 International Conference on Human Factors in Robots and Unmanned Systems, July 24-28, 2019, Washington DC, USA 10.
  • Chen, K., Meng, W., Wang, J., Liu, K., & Lu, Z. (2023). An investigation on the structural vibrations of multi-rotor passenger drones. International Journal of Micro Air Vehicles, 15, 17568293231199097.
  • Craig Jr, R. R., & Kurdila, A. J. (2006). Fundamentals of structural dynamics: John Wiley & Sons.
  • Cruz, C., & Miranda, E. (2017). Evaluation of damping ratios for the seismic analysis of tall buildings. Journal of structural engineering, 143(1), 04016144.
  • Eid, S. E., & Dol, S. S. (2019). Design and development of lightweight-high endurance unmanned aerial vehicle for offshore search and rescue operation. Paper presented at the 2019 Advances in Science and Engineering Technology International Conferences (ASET).
  • Foti, D., Ivorra, S., & Sabbà, M. F. (2012). Dynamic investigation of an ancient masonry bell tower with operational modal analysis: A non-destructive experimental technique to obtain the dynamic characteristics of a structure.
  • Fu, H., Liu, P., Zhang, Q., & Wang, Y. (2010). Vibration modal analysis of the active magnetic bearing system based on finite element. Paper presented at the 2010 IEEE International Conference on Mechatronics and Automation.
  • Ge, C., Dunno, K., Singh, M. A., Yuan, L., & Lu, L.-X. (2021). Development of a drone’s vibration, shock, and atmospheric profiles. Applied Sciences, 11(11), 5176.
  • Hafizi, Z., Aizzuddin, A., Halim, N., & Jamaludin, M. (2017). Modal properties investigation of car body-in-white with attached windscreen and rear screen. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  • Hassanalian, M., & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. Progress in Aerospace sciences, 91, 99-131.
  • Hii, M. S. Y., Courtney, P., & Royall, P. G. (2019). An evaluation of the delivery of medicines using drones. Drones, 3(3), 52.
  • Inman, D. J. (2017). Vibration with control: John Wiley & Sons.
  • Kim, I.-H., Jung, H.-J., Yoon, S., & Park, J. W. (2023). Dynamic Response Measurement and Cable Tension Estimation Using an Unmanned Aerial Vehicle. Remote Sensing, 15(16), 4000.
  • Kruithof, K. H., & Egeland, M. (2021). State estimator using hybrid kalman and particle filter for indoor uav navigation. University of Agder.
  • Legovich, Y., Maximov, Y., & Maximov, D. (2020). Quadrocopter vibration damping. Paper presented at the 2020 13th International Conference" Management of large-scale system development"(MLSD).
  • Meirovitch, L. (1980). Computational methods in structural dynamics (Vol. 5): Springer Science & Business Media.
  • Mohsan, S. A. H., Khan, M. A., Noor, F., Ullah, I., & Alsharif, M. H. (2022). Towards the unmanned aerial vehicles (UAVs): A comprehensive review. Drones, 6(6), 147.
  • Morales, R. M., Turner, M. C., Court, P., Hilditch, R., & Postlethwaite, I. (2014). Force control of semi‐active valve lag dampers for vibration reduction in helicopters. IET Control Theory & Applications, 8(6), 409-419.
  • Oakey, A., Waters, T., Zhu, W., Royall, P. G., Cherrett, T., Courtney, P., . . . Jelev, N. (2021). Quantifying the effects of vibration on medicines in transit caused by fixed-wing and multi-copter drones. Drones, 5(1), 22.
  • Ortiz Cayón, R. J. (2012). Online video stabilization for UAV. Motion estimation and compensation for unnamed aerial vehicles.
  • Perez, M., Billon, K., Gerges, T., Capsal, J.-F., Cabrera, M., Chesné, S., & Jean-Mistral, C. (2022). Vibration energy harvesting on a drone quadcopter based on piezoelectric structures. Mechanics & Industry, 23, 20.
  • Radkowski, S., & Szulim, P. (2014). Analysis of vibration of rotors in unmanned aircraft. Paper presented at the 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR).
  • Rahman, S., & Robertson, D. A. (2019). In‐flight RCS measurements of drones and birds at K‐band and W‐band. IET Radar, Sonar & Navigation, 13(2), 300-309.
  • Rasid, S. M. R., Mizuno, T., Ishino, Y., Takasaki, M., Hara, M., & Yamaguchi, D. (2019). Design and control of active vibration isolation system with an active dynamic vibration absorber operating as accelerometer. Journal of Sound and Vibration, 438, 175-190.
  • Redde, G., Kulkarni, P., Patil, P., Khedkar, D., & Chopade, J. (2018). Vibration analysis on frame and propeller of drone. International Journal of Advance Research in Science and Engineering, 7(5), 1-10.
  • Ren, Y., Zhu, F., Sui, S., Yi, Z., & Chen, K. (2024). Enhancing Quadrotor Control Robustness with Multi-Proportional–Integral–Derivative Self-Attention-Guided Deep Reinforcement Learning. Drones, 8(7), 315.
  • Shin, Y.-H., Kim, D., Son, S., Ham, J.-W., & Oh, K.-Y. (2021). Vibration isolation of a surveillance system equipped in a drone with mode decoupling. Applied Sciences, 11(4), 1961.
  • Sundararaj, S., Dharsan, K., Ganeshraman, J., & Rajarajeswari, D. (2021). Structural and modal analysis of hybrid low altitude self-sustainable surveillance drone technology frame. Materials Today: Proceedings, 37, 409-418.
  • Susilo, A. W., Achmad, W., Sri, N., & David, S. (2013). The effect of geometric structure on stiffness and damping factor of wood applicable to machine tool structure. International Journal of Science and Engineering, 4(2), 57-60.
  • Verma, & Collette. (2021). Active vibration isolation system for drone cameras. Paper presented at the Proceedings of the 14th International Conference on Vibration Problems: ICOVP 2019.
  • Verma, Lafarga, V., Baron, M., & Collette, C. (2020). Active stabilization of unmanned aerial vehicle imaging platform. Journal of Vibration and Control, 26(19-20), 1791-1803.
  • Verma, Pradhan, N. K., Nehra, R., & Prateek. (2018). Challenge and advantage of materials in design and fabrication of composite UAV. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  • Verma, M., & Collette, C. (2021). Active Vibration Isolation System for Drone Cameras. En: Proceedings of the 14th International Conference on Vibration Problems. Lecture in Mechanical Engineering: Springer, Singapore.
  • Vreugdenhil, C. B. (1964). Natural frequencies of free vertical ship vibrations. International Shipbuilding Progress, 11(122), 458-480.
  • Wang, Lu, Q., Zhang, K., & Shao, L. (2023). Design of micro-vibration suppression platform based on piezo-stack array intelligent structure. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237(4), 799-810.
  • Wang, X., Fan, W., Li, X., & Wang, L. (2019). Weak degradation characteristics analysis of UAV motors based on laplacian eigenmaps and variational mode decomposition. Sensors, 19(3), 524.
  • Yin, Q., Zhao, J., Liu, Y., & Zhang, Y. (2021). The approximate calculation of the natural frequencies of a Stockbridge type vibration damper and analysis of natural frequencies' sensitivity to the structural parameters. Mechanical Sciences, 12(2), 863-873.
  • You, C., & Zhang, R. (2019). 3D trajectory optimization in Rician fading for UAV-enabled data harvesting. IEEE Transactions on Wireless Communications, 18(6), 3192-3207.
  • Zhou, Y., Chang, S.-H., Wu, S., Cai, X. Y., Tang, L., & Xu, Z. (2018). FFT-ApEn analysis for the vibration signal of a rotating motor. International Journal of Acoustics & Vibration, 23(2), 203-207.
There are 47 citations in total.

Details

Primary Language English
Subjects Electronics, Sensors and Digital Hardware (Other)
Journal Section Research Articles
Authors

Ece Kalay 0000-0003-2470-7791

İskender Özkul 0000-0003-4255-0564

Publication Date December 31, 2024
Submission Date October 31, 2024
Acceptance Date December 10, 2024
Published in Issue Year 2024 Volume: 6 Issue: 2

Cite

APA Kalay, E., & Özkul, İ. (2024). Role of Vibrations in Unmanned Aerial Vehicles, Efficiency Measurement Techniques, and Performance Impacts. Türkiye İnsansız Hava Araçları Dergisi, 6(2), 72-80. https://doi.org/10.51534/tiha.1576860
AMA Kalay E, Özkul İ. Role of Vibrations in Unmanned Aerial Vehicles, Efficiency Measurement Techniques, and Performance Impacts. tiha. December 2024;6(2):72-80. doi:10.51534/tiha.1576860
Chicago Kalay, Ece, and İskender Özkul. “Role of Vibrations in Unmanned Aerial Vehicles, Efficiency Measurement Techniques, and Performance Impacts”. Türkiye İnsansız Hava Araçları Dergisi 6, no. 2 (December 2024): 72-80. https://doi.org/10.51534/tiha.1576860.
EndNote Kalay E, Özkul İ (December 1, 2024) Role of Vibrations in Unmanned Aerial Vehicles, Efficiency Measurement Techniques, and Performance Impacts. Türkiye İnsansız Hava Araçları Dergisi 6 2 72–80.
IEEE E. Kalay and İ. Özkul, “Role of Vibrations in Unmanned Aerial Vehicles, Efficiency Measurement Techniques, and Performance Impacts”, tiha, vol. 6, no. 2, pp. 72–80, 2024, doi: 10.51534/tiha.1576860.
ISNAD Kalay, Ece - Özkul, İskender. “Role of Vibrations in Unmanned Aerial Vehicles, Efficiency Measurement Techniques, and Performance Impacts”. Türkiye İnsansız Hava Araçları Dergisi 6/2 (December 2024), 72-80. https://doi.org/10.51534/tiha.1576860.
JAMA Kalay E, Özkul İ. Role of Vibrations in Unmanned Aerial Vehicles, Efficiency Measurement Techniques, and Performance Impacts. tiha. 2024;6:72–80.
MLA Kalay, Ece and İskender Özkul. “Role of Vibrations in Unmanned Aerial Vehicles, Efficiency Measurement Techniques, and Performance Impacts”. Türkiye İnsansız Hava Araçları Dergisi, vol. 6, no. 2, 2024, pp. 72-80, doi:10.51534/tiha.1576860.
Vancouver Kalay E, Özkul İ. Role of Vibrations in Unmanned Aerial Vehicles, Efficiency Measurement Techniques, and Performance Impacts. tiha. 2024;6(2):72-80.