Review
BibTex RIS Cite

ENERGETIC MATERIALS AND METAL BORIDES FOR SOLID PROPELLANT ROCKET ENGINES

Year 2020, Volume: 3 Issue: 2, 109 - 119, 31.12.2020

Abstract

Energetic materials are a kind of materials involving a huge amount of chemical energy and they can release this energy suddenly or slower. In this review study, types, usage areas and compositions of energetic materials are explored. Especially, energetic materials for solid propellant rocket motors are evaluated more extensively. The advantages and synthesis techniques of metal borides as an alternative to fuel in solid propellant rocket engines are criticized in the light of the relevant literature. It is concluded that, metal borides, particularly aluminum and magnesium borides, are promising materials as solid rocket engine fuel. However, new methods should be developed for the synthesis of higher amount and purity of metal boride.

References

  • [1]. M. L. Whittaker, “Synthesis, characterization and energetic performance of metal boride compounds for insensitive energetic materials,” The University of Utah, College of Engineering, Master Thesis, 2012.
  • [2]. M. Nazri and M. Jaafar, “Development of Solid Rocket Propulsion,” J. Mek., vol. 18, pp. 111–121, 2004.
  • [3]. A. E. Samur, K. P. P. B. Hv, H. H. Okulu, and A. K. Ğ. Lu, “Hibrit Yakitli Roket Motoru Ateşleme/TestDüzeneği̇ Tasarimi,” Havacılık Ve Uzay Teknol. Derg., vol. 9, no. 1, pp. 25–30, 2016.
  • [4]. V. Patel, J. K. Katiyar, and S. Bhattacharya, “Solid Energetic Materials-Based Microthrusters for Space Applications,” in Nano-Energetic Materials, S. Bhattacharya, A. Agarwa, T. Rajagopalan, and V. Patel, Eds. Singapore: Springer, 2019, pp. 241–250.
  • [5]. C. Tola, “Yakıt Özelliklerinin Katı Yakıtlı Roket Motoru İç Balistik Performansı Üzerine Etkilerinin İncelenmesi,” in VII. Ulusal Havacılık ve Uzay Konferansı, 2018.
  • [6]. U. G. Yüksel, “Investigation of compressible flow inside solid propellant rocket motor combustion chamber using various turbulence closure models,” Istanbul Technical University, 2005.
  • [7]. J.-C. TRAINEAU, P. HERVAT, and P. KUENTZMANN, “Cold-flow simulation of a two-dimensional nozzleless solid rocket motor,” in 22nd Joint Propulsion Conference, 1986, pp. 1447–1454.
  • [8]. R. Dunlap, A. M. Blackner, R. C. Waugh, R. S. Brown, and P. G. Willoughby, “Internal flow field studies in a simulated cylindrical port rocket chamber,” J. Propuls. Power, vol. 6, no. 6, pp. 690–704, 1990.
  • [9]. W.-W. Chu, V. Yang, and J. Majdalani, “Premixed flame response to acoustic waves in a porous-walled chamber with surface mass injection,” Combust. Flame, vol. 133, no. 3, pp. 359–370, 2003.
  • [10]. A. F. Ahmed and S. V Hoa, “Thermal insulation by heat resistant polymers for solid rocket motor insulation,” J. Compos. Mater., vol. 46, no. 13, pp. 1549–1559, 2012.
  • [11]. C. Tola and M. Nikbay, “Jenerik Kati Yakitli Roket Motoru Geometrisinin Sonlu Elemanlar Yontemiyle Dogrusal Viskoelastik Analizi ( A Viscoelastic Finite Element Analysis of a Generic Solid Rocket Motor Propellant Geometry),” in VI. Ulusal Havacılık ve Uzay Konferansı, 2016, pp. 1–18.
  • [12]. C. Tola, “A multidisciplinary approach in optimization of a solid rocket motor for structural strength and ınternal ballistic performance,” Istanbul Technical University, 2017.
  • [13]. C. Tola, “Effects of propellant properties on internal ballistic performance results of solid rocket motors,” Trans Motauto World, vol. 191, no. 4, pp. 188–191, 2018.
  • [14]. K. Naminosuke, Propellants and Explosives. Weinheim: Wiley-VCH, 2007.
  • [15]. M. Akram, “Behavior and Utilization of Energetic Materials in Defense Systems,” in International Conference on Defense & Security Technology, 2014.
  • [16]. D. I. Millar, Energetic Materials at Extreme Conditions. Berlin: Springer, 2016.
  • [17]. W.-G. Liu, “First-Principle Studies of the Initiation Mechanism of Energetic Materials,” California Institute of Technology, 2014.
  • [18]. L. E. Fried, M. R. Manaa, P. F. Pagoria, and R. L. Simpson, “Design and Synthesis of Energetic Materials,” Annu. Rev. Mater. Res., vol. 31, no. 1, pp. 291–321, 2001.
  • [19]. M. Durdu and N. Cantürk, “Potansiyel Yaralama Etkileri Açısından Havai Fişekler,” Bull. Leg. Med., vol. 22, no. 2, pp. 101–108, 2017.
  • [20]. Zhukov, Ilya, Vorozhtsov, Alexander, Promakhov, Vladimir, Dubkova, Yana, Zhukov, Alexander, and Khrustalev, Anton, “Powders of metal borides obtained by the SHS method and low-temperature plasma,” MATEC Web Conf., vol. 243, p. 15, 2018.
  • [21]. M. Rossol, “Arts, Crafts, Theater, and Entertainment,” in Reference Module in Biomedical Sciences Encyclopedia of Toxicology (Third Edition), P. Wexler, Ed. Academic Press, 2014, pp. 317–322.
  • [22]. İ. Kızılırmak, “Production Of Boron Potassium Nitrate Pyrotechnic and Determination of Ignition Characteristics By Laser,” Hacettepe Üniversitesi, 2019.
  • [23]. L. Navarrete-Martin and P. Krus, “Sounding Rockets: analysis, simulation and optimization of a solid propellant motor using Hopsan,” Transp. Res. Procedia, vol. 29, pp. 255–267, 2018.
  • [24]. Y. (Kibret) Adde and G. Lulseged, “Design of a Solid Rocket Propulsion System,” Int. J. Aeronaut. Sci. Aerosp. Res., vol. 7, no. 2, pp. 224–229, 2020.
  • [25]. A. G. Korotkikh, V. A. Arkhipov, K. V. Slyusarsky, and I. V. Sorokin, “Study of Ignition of High-Energy Materials with Boron and Aluminum and Titanium Diborides,” Combust. Explos. Shock Waves, vol. 54, no. 3, pp. 350–356, 2018.
  • [26]. M. L. Whittaker, R. A. Cutler, and P. E. Anderson, “Boride-Based Materials for Energetic Applications,” MRS Proc., vol. 1405, pp. mrsf11–1405-y11–02, 2012.
  • [27]. S. S. Bondarchuk et al., “Synthesis and Properties of Energetics Metal Borides for Hybrid Solid-Propellant Rocket Engines,” in Proceedings of the Scientific-Practical Conference ``Research and Development - 2016’’, 2018, pp. 511–519.
  • [28]. K.-L. Chintersingh, Q. Nguyen, M. Schoenitz, and E. L. Dreizin, “Combustion of boron particles in products of an air–acetylene flame,” Combust. Flame, vol. 172, pp. 194–205, 2016.
  • [29]. A. Zhukov et al., “Energetic borides: combustion synthesis and properties,” in Energetic materials: performance, safety and system applications : 46th International annual conference of the Fraunhofer ICT, 2015, pp. 1–5.
  • [30]. M. L. Whittaker and R. A. Cutler, “Effect of synthesis atmosphere, wetting, and compaction on the purity of AlB2,” J. Solid State Chem., vol. 201, pp. 93–100, 2013.
  • [31]. A. Khaliq, M. A. Rhamdhani, G. Brooks, and J. Grandfield, “Analysis of Boron Treatment for V Removal Using AlB2 and AlB12 Based Master Alloys,” in Light Metals 2014, G. J., Ed. Cham: Springer, 2014, pp. 963–968.
  • [32]. H. Duschanek and P. Rogl, “The Al-B (aluminum-boron) system,” J. Phase Equilibria, vol. 15, no. 5, pp. 543–552, 1994.
  • [33]. S. Kim, D. S. Stone, J.-I. Cho, C.-Y. Jeong, C.-S. Kang, and J.-C. Bae, “Phase stability determination of the Mg–B binary system using the CALPHAD method and ab initio calculations,” J. Alloys Compd., vol. 470, no. 1, pp. 85–89, 2009.
  • [34]. S. D. Bohnenstiehl, M. A. Susner, S. A. Dregia, M. D. Sumption, J. Donovan, and E. W. Collings, “Experimental determination of the peritectic transition temperature of MgB2 in the Mg–B phase diagram,” Thermochim. Acta, vol. 576, pp. 27–35, 2014.
  • [35]. C. Jiang, Y. Ma, F. Zhao, L. Wei, H. Zhang, and C. Pei, “Synthesis and characterisation of AlB2 nanopowders by solid state reaction,” Micro Nano Lett., vol. 9, no. 2, pp. 132–135, 2014.
  • [36]. S. Adil, A. Karati, and B. S. Murty, “Mechanochemical synthesis of nanocrystalline aluminium boride (AlB12),” Ceram. Int., vol. 44, no. 16, pp. 20105–20110, 2018.
  • [37]. Y. Guo, W. Zhang, X. Zhou, and T. Bao, “Magnesium boride sintered as high-energy fuel,” J. Therm. Anal. Calorim., vol. 113, no. 2, pp. 787–791, 2013.
  • [38]. B. Canöz, A. Ü. Metin, and M. Gürü, “Mekanokimyasal Yöntemle Elementlerinden Magnezyum Diborür (MgB2) Sentezi ve Enerjetik Madde Olarak Kullanımı,” J. Polytech., 2020.
  • [39]. M. K. Ziyatdinov, A. S. Zhukov, I. A. Zhukov, and V. . Promakhov, “Method of Producing Aluminium Diboride,” RU2603793, 2016.
  • [40]. S. L. Guseinov, S. G. Fedorov, and P. A. Storozhenko, “Methods of the Synthesis of Aluminum Borides from Elemental Substances for Use as High-Energy Materials: A Review,” Theor. Found. Chem. Eng., vol. 54, no. 4, pp. 686–692, 2020.
  • [41]. S. L. Guseinov et al., “Nanodispersive aluminum boride prepared by a plasma recondensation of aluminum and boron micron powders,” Nanotechnologies Russ., vol. 10, no. 5, pp. 420–427, 2015.
Year 2020, Volume: 3 Issue: 2, 109 - 119, 31.12.2020

Abstract

References

  • [1]. M. L. Whittaker, “Synthesis, characterization and energetic performance of metal boride compounds for insensitive energetic materials,” The University of Utah, College of Engineering, Master Thesis, 2012.
  • [2]. M. Nazri and M. Jaafar, “Development of Solid Rocket Propulsion,” J. Mek., vol. 18, pp. 111–121, 2004.
  • [3]. A. E. Samur, K. P. P. B. Hv, H. H. Okulu, and A. K. Ğ. Lu, “Hibrit Yakitli Roket Motoru Ateşleme/TestDüzeneği̇ Tasarimi,” Havacılık Ve Uzay Teknol. Derg., vol. 9, no. 1, pp. 25–30, 2016.
  • [4]. V. Patel, J. K. Katiyar, and S. Bhattacharya, “Solid Energetic Materials-Based Microthrusters for Space Applications,” in Nano-Energetic Materials, S. Bhattacharya, A. Agarwa, T. Rajagopalan, and V. Patel, Eds. Singapore: Springer, 2019, pp. 241–250.
  • [5]. C. Tola, “Yakıt Özelliklerinin Katı Yakıtlı Roket Motoru İç Balistik Performansı Üzerine Etkilerinin İncelenmesi,” in VII. Ulusal Havacılık ve Uzay Konferansı, 2018.
  • [6]. U. G. Yüksel, “Investigation of compressible flow inside solid propellant rocket motor combustion chamber using various turbulence closure models,” Istanbul Technical University, 2005.
  • [7]. J.-C. TRAINEAU, P. HERVAT, and P. KUENTZMANN, “Cold-flow simulation of a two-dimensional nozzleless solid rocket motor,” in 22nd Joint Propulsion Conference, 1986, pp. 1447–1454.
  • [8]. R. Dunlap, A. M. Blackner, R. C. Waugh, R. S. Brown, and P. G. Willoughby, “Internal flow field studies in a simulated cylindrical port rocket chamber,” J. Propuls. Power, vol. 6, no. 6, pp. 690–704, 1990.
  • [9]. W.-W. Chu, V. Yang, and J. Majdalani, “Premixed flame response to acoustic waves in a porous-walled chamber with surface mass injection,” Combust. Flame, vol. 133, no. 3, pp. 359–370, 2003.
  • [10]. A. F. Ahmed and S. V Hoa, “Thermal insulation by heat resistant polymers for solid rocket motor insulation,” J. Compos. Mater., vol. 46, no. 13, pp. 1549–1559, 2012.
  • [11]. C. Tola and M. Nikbay, “Jenerik Kati Yakitli Roket Motoru Geometrisinin Sonlu Elemanlar Yontemiyle Dogrusal Viskoelastik Analizi ( A Viscoelastic Finite Element Analysis of a Generic Solid Rocket Motor Propellant Geometry),” in VI. Ulusal Havacılık ve Uzay Konferansı, 2016, pp. 1–18.
  • [12]. C. Tola, “A multidisciplinary approach in optimization of a solid rocket motor for structural strength and ınternal ballistic performance,” Istanbul Technical University, 2017.
  • [13]. C. Tola, “Effects of propellant properties on internal ballistic performance results of solid rocket motors,” Trans Motauto World, vol. 191, no. 4, pp. 188–191, 2018.
  • [14]. K. Naminosuke, Propellants and Explosives. Weinheim: Wiley-VCH, 2007.
  • [15]. M. Akram, “Behavior and Utilization of Energetic Materials in Defense Systems,” in International Conference on Defense & Security Technology, 2014.
  • [16]. D. I. Millar, Energetic Materials at Extreme Conditions. Berlin: Springer, 2016.
  • [17]. W.-G. Liu, “First-Principle Studies of the Initiation Mechanism of Energetic Materials,” California Institute of Technology, 2014.
  • [18]. L. E. Fried, M. R. Manaa, P. F. Pagoria, and R. L. Simpson, “Design and Synthesis of Energetic Materials,” Annu. Rev. Mater. Res., vol. 31, no. 1, pp. 291–321, 2001.
  • [19]. M. Durdu and N. Cantürk, “Potansiyel Yaralama Etkileri Açısından Havai Fişekler,” Bull. Leg. Med., vol. 22, no. 2, pp. 101–108, 2017.
  • [20]. Zhukov, Ilya, Vorozhtsov, Alexander, Promakhov, Vladimir, Dubkova, Yana, Zhukov, Alexander, and Khrustalev, Anton, “Powders of metal borides obtained by the SHS method and low-temperature plasma,” MATEC Web Conf., vol. 243, p. 15, 2018.
  • [21]. M. Rossol, “Arts, Crafts, Theater, and Entertainment,” in Reference Module in Biomedical Sciences Encyclopedia of Toxicology (Third Edition), P. Wexler, Ed. Academic Press, 2014, pp. 317–322.
  • [22]. İ. Kızılırmak, “Production Of Boron Potassium Nitrate Pyrotechnic and Determination of Ignition Characteristics By Laser,” Hacettepe Üniversitesi, 2019.
  • [23]. L. Navarrete-Martin and P. Krus, “Sounding Rockets: analysis, simulation and optimization of a solid propellant motor using Hopsan,” Transp. Res. Procedia, vol. 29, pp. 255–267, 2018.
  • [24]. Y. (Kibret) Adde and G. Lulseged, “Design of a Solid Rocket Propulsion System,” Int. J. Aeronaut. Sci. Aerosp. Res., vol. 7, no. 2, pp. 224–229, 2020.
  • [25]. A. G. Korotkikh, V. A. Arkhipov, K. V. Slyusarsky, and I. V. Sorokin, “Study of Ignition of High-Energy Materials with Boron and Aluminum and Titanium Diborides,” Combust. Explos. Shock Waves, vol. 54, no. 3, pp. 350–356, 2018.
  • [26]. M. L. Whittaker, R. A. Cutler, and P. E. Anderson, “Boride-Based Materials for Energetic Applications,” MRS Proc., vol. 1405, pp. mrsf11–1405-y11–02, 2012.
  • [27]. S. S. Bondarchuk et al., “Synthesis and Properties of Energetics Metal Borides for Hybrid Solid-Propellant Rocket Engines,” in Proceedings of the Scientific-Practical Conference ``Research and Development - 2016’’, 2018, pp. 511–519.
  • [28]. K.-L. Chintersingh, Q. Nguyen, M. Schoenitz, and E. L. Dreizin, “Combustion of boron particles in products of an air–acetylene flame,” Combust. Flame, vol. 172, pp. 194–205, 2016.
  • [29]. A. Zhukov et al., “Energetic borides: combustion synthesis and properties,” in Energetic materials: performance, safety and system applications : 46th International annual conference of the Fraunhofer ICT, 2015, pp. 1–5.
  • [30]. M. L. Whittaker and R. A. Cutler, “Effect of synthesis atmosphere, wetting, and compaction on the purity of AlB2,” J. Solid State Chem., vol. 201, pp. 93–100, 2013.
  • [31]. A. Khaliq, M. A. Rhamdhani, G. Brooks, and J. Grandfield, “Analysis of Boron Treatment for V Removal Using AlB2 and AlB12 Based Master Alloys,” in Light Metals 2014, G. J., Ed. Cham: Springer, 2014, pp. 963–968.
  • [32]. H. Duschanek and P. Rogl, “The Al-B (aluminum-boron) system,” J. Phase Equilibria, vol. 15, no. 5, pp. 543–552, 1994.
  • [33]. S. Kim, D. S. Stone, J.-I. Cho, C.-Y. Jeong, C.-S. Kang, and J.-C. Bae, “Phase stability determination of the Mg–B binary system using the CALPHAD method and ab initio calculations,” J. Alloys Compd., vol. 470, no. 1, pp. 85–89, 2009.
  • [34]. S. D. Bohnenstiehl, M. A. Susner, S. A. Dregia, M. D. Sumption, J. Donovan, and E. W. Collings, “Experimental determination of the peritectic transition temperature of MgB2 in the Mg–B phase diagram,” Thermochim. Acta, vol. 576, pp. 27–35, 2014.
  • [35]. C. Jiang, Y. Ma, F. Zhao, L. Wei, H. Zhang, and C. Pei, “Synthesis and characterisation of AlB2 nanopowders by solid state reaction,” Micro Nano Lett., vol. 9, no. 2, pp. 132–135, 2014.
  • [36]. S. Adil, A. Karati, and B. S. Murty, “Mechanochemical synthesis of nanocrystalline aluminium boride (AlB12),” Ceram. Int., vol. 44, no. 16, pp. 20105–20110, 2018.
  • [37]. Y. Guo, W. Zhang, X. Zhou, and T. Bao, “Magnesium boride sintered as high-energy fuel,” J. Therm. Anal. Calorim., vol. 113, no. 2, pp. 787–791, 2013.
  • [38]. B. Canöz, A. Ü. Metin, and M. Gürü, “Mekanokimyasal Yöntemle Elementlerinden Magnezyum Diborür (MgB2) Sentezi ve Enerjetik Madde Olarak Kullanımı,” J. Polytech., 2020.
  • [39]. M. K. Ziyatdinov, A. S. Zhukov, I. A. Zhukov, and V. . Promakhov, “Method of Producing Aluminium Diboride,” RU2603793, 2016.
  • [40]. S. L. Guseinov, S. G. Fedorov, and P. A. Storozhenko, “Methods of the Synthesis of Aluminum Borides from Elemental Substances for Use as High-Energy Materials: A Review,” Theor. Found. Chem. Eng., vol. 54, no. 4, pp. 686–692, 2020.
  • [41]. S. L. Guseinov et al., “Nanodispersive aluminum boride prepared by a plasma recondensation of aluminum and boron micron powders,” Nanotechnologies Russ., vol. 10, no. 5, pp. 420–427, 2015.
There are 41 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials
Journal Section Articles
Authors

Mustafa Güven Gök 0000-0002-5959-0549

Ömer Cihan 0000-0001-8103-3063

Publication Date December 31, 2020
Acceptance Date November 9, 2020
Published in Issue Year 2020 Volume: 3 Issue: 2

Cite

APA Gök, M. G., & Cihan, Ö. (2020). ENERGETIC MATERIALS AND METAL BORIDES FOR SOLID PROPELLANT ROCKET ENGINES. The International Journal of Materials and Engineering Technology, 3(2), 109-119.
AMA Gök MG, Cihan Ö. ENERGETIC MATERIALS AND METAL BORIDES FOR SOLID PROPELLANT ROCKET ENGINES. TIJMET. December 2020;3(2):109-119.
Chicago Gök, Mustafa Güven, and Ömer Cihan. “ENERGETIC MATERIALS AND METAL BORIDES FOR SOLID PROPELLANT ROCKET ENGINES”. The International Journal of Materials and Engineering Technology 3, no. 2 (December 2020): 109-19.
EndNote Gök MG, Cihan Ö (December 1, 2020) ENERGETIC MATERIALS AND METAL BORIDES FOR SOLID PROPELLANT ROCKET ENGINES. The International Journal of Materials and Engineering Technology 3 2 109–119.
IEEE M. G. Gök and Ö. Cihan, “ENERGETIC MATERIALS AND METAL BORIDES FOR SOLID PROPELLANT ROCKET ENGINES”, TIJMET, vol. 3, no. 2, pp. 109–119, 2020.
ISNAD Gök, Mustafa Güven - Cihan, Ömer. “ENERGETIC MATERIALS AND METAL BORIDES FOR SOLID PROPELLANT ROCKET ENGINES”. The International Journal of Materials and Engineering Technology 3/2 (December 2020), 109-119.
JAMA Gök MG, Cihan Ö. ENERGETIC MATERIALS AND METAL BORIDES FOR SOLID PROPELLANT ROCKET ENGINES. TIJMET. 2020;3:109–119.
MLA Gök, Mustafa Güven and Ömer Cihan. “ENERGETIC MATERIALS AND METAL BORIDES FOR SOLID PROPELLANT ROCKET ENGINES”. The International Journal of Materials and Engineering Technology, vol. 3, no. 2, 2020, pp. 109-1.
Vancouver Gök MG, Cihan Ö. ENERGETIC MATERIALS AND METAL BORIDES FOR SOLID PROPELLANT ROCKET ENGINES. TIJMET. 2020;3(2):109-1.