Research Article
BibTex RIS Cite

INVESTIGATING THE RESIDUAL STRESSES THAT FORMED AFTER THE HARDENING HEAT TREATMENT OF AISI/SAE 4140 STEEL BY ULTRASONIC TESTING METHOD

Year 2021, Volume: 4 Issue: 1, 32 - 43, 30.06.2021

Abstract

Residual stresses may form after various machining and heat treating applications. Some applications include; thermo-mechanical methods, unsuitable usage of machining tools and cutting parameters. Residual stresses may also increase up to very high levels in consequence of hardening and surface treatment of metallic materials. Residual stresses can form after the production of structural and mechanical components and deteriorate the fatique and service life, dimension stability, technical security requirements. Hence, the residual stress level of such parts should be decreased to reasonable values to increase the service life and reduce costs.
In this work; the effects of tempering temperature on residual stresses of AISI/SAE 4140 steel alloy that widely used in mechanical part industries after hardening heat treatment is investigated. 40x40x120 mm in dimensions of 15 samples is heat treated as normalized owing to ensure uniform beginning microstructures. Then, hardening heat treatment is applied with 6 different tempering temperatures besides 2 untempered samples. After hardness surveys of all samples are tested with ultrasonic flow detector. Longitudinal and surface waves are used in ultrasonic examinations. Whether the residual stress in test materials increase the sound velocity of the ultrasonic wave decreases. The relationship between travel speeds of ultrasonic waves and residual stresses are estimated by mathematical equations.

Thanks

Authors present thanks to MKEK Çankırı Armament Factory Quality Laboratory Staff for their precious experimental supports.

References

  • [1]. Vlack L. H. V. Elements of Materials Science and Engineering, University of Michigan, USA. 1989. Addison-Wesley Publishing Company, Sixth Edition. pp: 315-324.
  • [2]. Topbaş M.A. Çelik ve Isıl İşlem El Kitabı, Prestij Publishing, İstanbul. 1998, p:47.
  • [3]. Thelning K. E. Çelik ve Isıl İşlemi Bofors El Kitabı, Hakan Publishing, İstanbul. 1984. pp:183-184.
  • [4]. Dosett J.L., Boyer H. E, Practical Heat Treating, ASM International, Materials Park. USA. 2006, p.2.
  • [5]. Oettel R. The Determination of Uncertanities in Residual Stress Measurement, Standards Measurement and Testing Project SMT4-CT 97-2165, 2000. Uncert Cop, Dresden, Germany.
  • [6]. Kurdyavtsev Y., Kleiman J., Ultrasonic technique and device for residual stress measurement, Engineering applications of residual stress, Volume: 8. pp: 55-66, 2011. doi. 10.1007/978-1-4614-0225-1-8.
  • [7]. DGZfP-Ultrasonic Testing Notes, Die Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.V., 2000. Germany.
  • [8]. Bray, D.E., Junghan P. Application of the LCR ultrasonic technique for evaluation of post-weld heat treatment in steel plates, NDT and E International Vol. 28 No:4, 1995. pp. 235-242.
  • [9]. Duquennoy M., Ouaftouh M., Ourak M. Ultrasonic evaluation of stresses in orthoropic materials using Rayleigh waves, NDT and E International, 1999. 32, pp.189-199.
  • [10]. Walaszek H., Abdallahouı Y., Lieurade H.P. Potentialities of ultrasonics for evaulating residualo stresses: Influence of Microstructure, Journal of Pressure Vessel Technology, 2002. 124:3, pp. 349-353.
  • [11]. ASM Handbook Committee, ASM Metals Handbook Volume 4. (1991). Heat treating, p.700, ASM International, USA.
  • [12]. TS EN ISO 2400, 2013. Türk Standartları Enstitüsü, Tahribatsız muayene-ultrasonik muayene-kalibrasyon blok No:1. Özellikler.
  • [13]. Raj B., Jayakumar T., Thavasimuthu M. Practical non-destructive testing Second Edition, ASM International, The Materials Information Society. 2002. pp.77-99.
  • [14]. ASM Metals Handbook Volume 17. 9th Edition, Non-destructive evaluation and quality control, 1992. pp. 486-592. USA.
  • [15]. ASTM A370, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, 2011. USA.
  • [16]. ASM Metals Handbook Volume 1, Iron, Steels and High Performance Alloys, 2005. p.1051.
  • [17]. Bray D. E, Tang W., Subsurface stress evaluation in steel plates and bars using the LCR ultrasonic wave, Nuclear Engineering and Design, Volume 207, Issue 2, 2001, Pages 231-240, ISSN 0029-5493, https://doi.org/10.1016/S0029-5493 (01)00334-X.
  • [18]. Yashar J. Hamed S., Pirzaman, Mohammadreza Hadizadeh Raeisi, Mehdi Ahmadi Najafabadi, Ultrasonic inspection of a welded stainless steel pipe to evaluate residual stresses through thickness, Materials & Design, Volume 49, 2013. pp 591-601,ISSN 0261-3069, https://doi.org/10.1016/j.matdes.2013.02.050.
  • [19]. Acevedo R., Sedlak P., Kolman R., Fredel M., Residual stress analysis of additive manufacturing of metallic parts using ultrasonic waves: State of the art review, Journal of Materials Research and Technology, Volume 9, Issue 4, 2020. pp. 9457-9477, ISSN 2238-7854, https://doi.org/10.1016/j.jmrt.2020.05.092.
  • [20]. Zhan Y., Yingmei L., Zhang E., Yiming G., Changsheng L., Laser ultrasonic technology for residual stress measurement of 7075 aluminum alloy friction stir welding, Applied Acoustics, Volume 145, 2019. pp. 52-59, ISSN 0003-682X, https://doi.org/10.1016/j.apacoust.2018.09.010.
  • [21]. Javadi Y., Nina E. Sweeney, Ehsan Mohseni, Charles N. MacLeod, David Lines, Momchil Vasilev, Zhen Qiu, Carmelo Mineo, Stephen G. Pierce, Anthony Gachagan, Investigating the effect of residual stress on hydrogen cracking in multi-pass robotic welding through process compatible non-destructive testing, Journal of Manufacturing Processes, 2020. ISSN 1526-6125, https://doi.org/10.1016/j.jmapro.2020.03.043.
  • [22]. Tamrakar S.B., Asaue H., Shiotani T., Chang K.C., Fujiwara Y., In situ ultrasonic method for estimating residual tension of wedge fix type anchors, Construction and Building Materials, Volume 189, 2018. pp.1184-1190, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2018.07.251.
  • [23]. Javadi Y., Mehdi Ahmadi N, Comparison between contact and immersion ultrasonic method to evaluate welding residual stresses of dissimilar joints, Materials & Design,Volume47,2013.pp.473-482,ISSN0261-3069, https://doi.org/10.1016/j.matdes.2012.12.069.
  • [24]. Yuan K., Yoichi S., Simulation of residual stress and fatigue strength of welded joints under the effects of ultrasonic impact treatment (UIT), International Journal of Fatigue, Volume 92, Part 1, 2016. pp. 321-332, ISSN 0142-1123, https://doi.org/10.1016/j.ijfatigue.2016.07.018.
  • [25]. Uzun F., Bilge A. N., Immersion ultrasonic technique for investigation of total welding residual stress, Procedia Engineering, Volume 10, 2011. pp. 3098-3103, ISSN 1877-7058, https://doi.org/10.1016/j.proeng.2011.04.513.
  • [26]. Castellano A., Foti P., Fraddosio A., Salvatore Marzano, Mario Daniele Piccioni, Mechanical characterization of CFRP composites by ultrasonic immersion tests: Experimental and numerical approaches, Composites Part B: Engineering, Volume 66, 2014.pp.299-310, ISSN 1359-8368, https://doi.org/10.1016/j.compositesb.2014.04.024.
  • [27]. Acevedo R., Sedlak P., Kolman R., Fredel M., Residual stress analysis of additive manufacturing of metallic parts using ultrasonic waves: State of the art review, Journal of Materials Research and Technology, Volume 9, Issue 4, 2020. pp. 9457-9477, ISSN 2238-7854, https://doi.org/10.1016/j.jmrt.2020.05.092.
  • [28]. Yu Z., Yingmei L., Enda Z., Yiming G., Changsheng L., Laser ultrasonic technology for residual stress measurement of 7075 aluminum alloy friction stir welding, Applied Acoustics, Volume 145, 2019. pp. 52-59, ISSN 0003-682X, https://doi.org/10.1016/j.apacoust.2018.09.010.
  • [29]. Tamrakar S.B., Asaue H., Shiotani T., Chang K.C., Fujiwara Y., In situ ultrasonic method for estimating residual tension of wedge fix type anchors, Construction and Building Materials, Volume 189, 2018. pp. 1184-1190, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2018.07.251.
  • [30]. Yuan K., Sumi Y., Simulation of residual stress and fatigue strength of welded joints under the effects of ultrasonic impact treatment (UIT), International Journal of Fatigue, Volume 92, Part 1, 2016. pp. 321-332, ISSN 0142-1123, https://doi.org/10.1016/j.ijfatigue.2016.07.018.
Year 2021, Volume: 4 Issue: 1, 32 - 43, 30.06.2021

Abstract

References

  • [1]. Vlack L. H. V. Elements of Materials Science and Engineering, University of Michigan, USA. 1989. Addison-Wesley Publishing Company, Sixth Edition. pp: 315-324.
  • [2]. Topbaş M.A. Çelik ve Isıl İşlem El Kitabı, Prestij Publishing, İstanbul. 1998, p:47.
  • [3]. Thelning K. E. Çelik ve Isıl İşlemi Bofors El Kitabı, Hakan Publishing, İstanbul. 1984. pp:183-184.
  • [4]. Dosett J.L., Boyer H. E, Practical Heat Treating, ASM International, Materials Park. USA. 2006, p.2.
  • [5]. Oettel R. The Determination of Uncertanities in Residual Stress Measurement, Standards Measurement and Testing Project SMT4-CT 97-2165, 2000. Uncert Cop, Dresden, Germany.
  • [6]. Kurdyavtsev Y., Kleiman J., Ultrasonic technique and device for residual stress measurement, Engineering applications of residual stress, Volume: 8. pp: 55-66, 2011. doi. 10.1007/978-1-4614-0225-1-8.
  • [7]. DGZfP-Ultrasonic Testing Notes, Die Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.V., 2000. Germany.
  • [8]. Bray, D.E., Junghan P. Application of the LCR ultrasonic technique for evaluation of post-weld heat treatment in steel plates, NDT and E International Vol. 28 No:4, 1995. pp. 235-242.
  • [9]. Duquennoy M., Ouaftouh M., Ourak M. Ultrasonic evaluation of stresses in orthoropic materials using Rayleigh waves, NDT and E International, 1999. 32, pp.189-199.
  • [10]. Walaszek H., Abdallahouı Y., Lieurade H.P. Potentialities of ultrasonics for evaulating residualo stresses: Influence of Microstructure, Journal of Pressure Vessel Technology, 2002. 124:3, pp. 349-353.
  • [11]. ASM Handbook Committee, ASM Metals Handbook Volume 4. (1991). Heat treating, p.700, ASM International, USA.
  • [12]. TS EN ISO 2400, 2013. Türk Standartları Enstitüsü, Tahribatsız muayene-ultrasonik muayene-kalibrasyon blok No:1. Özellikler.
  • [13]. Raj B., Jayakumar T., Thavasimuthu M. Practical non-destructive testing Second Edition, ASM International, The Materials Information Society. 2002. pp.77-99.
  • [14]. ASM Metals Handbook Volume 17. 9th Edition, Non-destructive evaluation and quality control, 1992. pp. 486-592. USA.
  • [15]. ASTM A370, Standard Test Methods and Definitions for Mechanical Testing of Steel Products, 2011. USA.
  • [16]. ASM Metals Handbook Volume 1, Iron, Steels and High Performance Alloys, 2005. p.1051.
  • [17]. Bray D. E, Tang W., Subsurface stress evaluation in steel plates and bars using the LCR ultrasonic wave, Nuclear Engineering and Design, Volume 207, Issue 2, 2001, Pages 231-240, ISSN 0029-5493, https://doi.org/10.1016/S0029-5493 (01)00334-X.
  • [18]. Yashar J. Hamed S., Pirzaman, Mohammadreza Hadizadeh Raeisi, Mehdi Ahmadi Najafabadi, Ultrasonic inspection of a welded stainless steel pipe to evaluate residual stresses through thickness, Materials & Design, Volume 49, 2013. pp 591-601,ISSN 0261-3069, https://doi.org/10.1016/j.matdes.2013.02.050.
  • [19]. Acevedo R., Sedlak P., Kolman R., Fredel M., Residual stress analysis of additive manufacturing of metallic parts using ultrasonic waves: State of the art review, Journal of Materials Research and Technology, Volume 9, Issue 4, 2020. pp. 9457-9477, ISSN 2238-7854, https://doi.org/10.1016/j.jmrt.2020.05.092.
  • [20]. Zhan Y., Yingmei L., Zhang E., Yiming G., Changsheng L., Laser ultrasonic technology for residual stress measurement of 7075 aluminum alloy friction stir welding, Applied Acoustics, Volume 145, 2019. pp. 52-59, ISSN 0003-682X, https://doi.org/10.1016/j.apacoust.2018.09.010.
  • [21]. Javadi Y., Nina E. Sweeney, Ehsan Mohseni, Charles N. MacLeod, David Lines, Momchil Vasilev, Zhen Qiu, Carmelo Mineo, Stephen G. Pierce, Anthony Gachagan, Investigating the effect of residual stress on hydrogen cracking in multi-pass robotic welding through process compatible non-destructive testing, Journal of Manufacturing Processes, 2020. ISSN 1526-6125, https://doi.org/10.1016/j.jmapro.2020.03.043.
  • [22]. Tamrakar S.B., Asaue H., Shiotani T., Chang K.C., Fujiwara Y., In situ ultrasonic method for estimating residual tension of wedge fix type anchors, Construction and Building Materials, Volume 189, 2018. pp.1184-1190, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2018.07.251.
  • [23]. Javadi Y., Mehdi Ahmadi N, Comparison between contact and immersion ultrasonic method to evaluate welding residual stresses of dissimilar joints, Materials & Design,Volume47,2013.pp.473-482,ISSN0261-3069, https://doi.org/10.1016/j.matdes.2012.12.069.
  • [24]. Yuan K., Yoichi S., Simulation of residual stress and fatigue strength of welded joints under the effects of ultrasonic impact treatment (UIT), International Journal of Fatigue, Volume 92, Part 1, 2016. pp. 321-332, ISSN 0142-1123, https://doi.org/10.1016/j.ijfatigue.2016.07.018.
  • [25]. Uzun F., Bilge A. N., Immersion ultrasonic technique for investigation of total welding residual stress, Procedia Engineering, Volume 10, 2011. pp. 3098-3103, ISSN 1877-7058, https://doi.org/10.1016/j.proeng.2011.04.513.
  • [26]. Castellano A., Foti P., Fraddosio A., Salvatore Marzano, Mario Daniele Piccioni, Mechanical characterization of CFRP composites by ultrasonic immersion tests: Experimental and numerical approaches, Composites Part B: Engineering, Volume 66, 2014.pp.299-310, ISSN 1359-8368, https://doi.org/10.1016/j.compositesb.2014.04.024.
  • [27]. Acevedo R., Sedlak P., Kolman R., Fredel M., Residual stress analysis of additive manufacturing of metallic parts using ultrasonic waves: State of the art review, Journal of Materials Research and Technology, Volume 9, Issue 4, 2020. pp. 9457-9477, ISSN 2238-7854, https://doi.org/10.1016/j.jmrt.2020.05.092.
  • [28]. Yu Z., Yingmei L., Enda Z., Yiming G., Changsheng L., Laser ultrasonic technology for residual stress measurement of 7075 aluminum alloy friction stir welding, Applied Acoustics, Volume 145, 2019. pp. 52-59, ISSN 0003-682X, https://doi.org/10.1016/j.apacoust.2018.09.010.
  • [29]. Tamrakar S.B., Asaue H., Shiotani T., Chang K.C., Fujiwara Y., In situ ultrasonic method for estimating residual tension of wedge fix type anchors, Construction and Building Materials, Volume 189, 2018. pp. 1184-1190, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2018.07.251.
  • [30]. Yuan K., Sumi Y., Simulation of residual stress and fatigue strength of welded joints under the effects of ultrasonic impact treatment (UIT), International Journal of Fatigue, Volume 92, Part 1, 2016. pp. 321-332, ISSN 0142-1123, https://doi.org/10.1016/j.ijfatigue.2016.07.018.
There are 30 citations in total.

Details

Primary Language English
Subjects Material Characterization, Materials Engineering (Other)
Journal Section Articles
Authors

Aziz Barış Başyiğit 0000-0003-1544-3747

Necip Camuşcu This is me

Publication Date June 30, 2021
Acceptance Date April 7, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Başyiğit, A. B., & Camuşcu, N. (2021). INVESTIGATING THE RESIDUAL STRESSES THAT FORMED AFTER THE HARDENING HEAT TREATMENT OF AISI/SAE 4140 STEEL BY ULTRASONIC TESTING METHOD. The International Journal of Materials and Engineering Technology, 4(1), 32-43.