Research Article
BibTex RIS Cite

ANALYSIS OF MECHANICAL BEHAVIOR OF TERMOPLASTIC COMPOSITES

Year 2022, Volume: 5 Issue: 1, 7 - 12, 30.06.2022

Abstract

This paper presents the effect of fiber orientation on the tensile, compression, impact, and flexural properties of glass fiber reinforced acrylic-based thermoplastic composites. The mechanical behavior of three different composite plates, produced by the resin transfer molding (RTM) method, with 0o/90o/45o, 0o/90o and ±45o glass fiber orientations were investigated by carrying out tensile, compression, three-point bending and Charpy impact tests. A Weibull distribution model was implemented to explain the variation in mechanical properties of the acrylic-based composite. According to Weibull analysis results with 63.2% probability, the highest tensile strength (561 MPa), compressive strength (293 MPa) and impact values (19.44 J) were obtained when the plate with 0o/90o glass fiber orientation was tested, whereas the highest flexural strength was obtained when the plate with 0o/90o/45o was tested.

References

  • [1] Kosmann, N., Karsten, J., Schuett, M., Schulte, K., & Fiedler, B. (2015). Determining the effect of voids in GFRP on the damage behaviour under compression loading using acoustic emission. Composites Part B: Engineering, 70, 184-188. doi:10.1016/j.compositesb.2014.11.010.
  • [2] Bazli, M., Jafari, A., Ashrafi, H., Zhao, X., Bai, Y., & Raman, R. S. (2020). Effects of UV radiation, moisture and elevated temperature on mechanical properties of GFRP pultruded profiles. Construction and Building Materials, 231, 117137. doi:10.1016/j.conbuildmat.2019.117137.
  • [3] Bai, Y., & Keller, T. (2011). Delamination and kink-band failure of pultruded GFRP laminates under elevated temperatures and compression. Composite Structures, 93(2), 843-849. doi:10.1016/j.compstruct.2010.07.010.
  • [4] Yu, B., Till, V., & Thomas, K. (2007). Modeling of thermo-physical properties for FRP composites under elevated and high temperature. Composites Science and Technology, 67(15-16), 3098-3109. doi:10.1016/j.compscitech.2007.04.019.
  • [5] Biron, Michel. Thermoplastics and thermoplastic composites. William Andrew, 2018.
  • [6] Pini, T., Caimmi, F., Briatico-Vangosa, F., Frassine, R., & Rink, M. (2017). Fracture initiation and propagation in unidirectional CF composites based on thermoplastic acrylic resins. Engineering Fracture Mechanics, 184, 51-58.
  • [7] Kazemi, M. E., Shanmugam, L., Li, Z., Ma, R., Yang, L., & Yang, J. (2020). Low-velocity impact behaviors of a fully thermoplastic composite laminate fabricated with an innovative acrylic resin. Composite Structures, 250, 112604.
  • [8] Bhudolia, S. K., & Joshi, S. C. (2018). Low-velocity impact response of carbon fibre composites with novel liquid Methylmethacrylate thermoplastic matrix. Composite Structures, 203, 696-708.
  • [9] Obande, W., Ray, D., & Brádaigh, C. M. Ó. (2019). Viscoelastic and drop-weight impact properties of an acrylic-matrix composite and a conventional thermoset composite–A comparative study. Materials Letters, 238, 38-41.
  • [10] Boumbimba, R. M., Coulibaly, M., Khabouchi, A., Kinvi-Dossou, A., Bonfoh, N., & Gerard, P. (2017). Glass fibres reinforced acrylic thermoplastic resin-based tri-block copolymers composites: Low velocity impact response at various temperatures. Composite Structures, 160, 939-951.
  • [11] Kinvi-Dossou, G., Boumbimba, R. M., Bonfoh, N., Koutsawa, Y., Eccli, D., & Gerard, P. (2018). A numerical homogenization of E-glass/acrylic woven composite laminates: Application to low velocity impact. Composite Structures, 200, 540-554.
  • [12] Bhudolia, S. K., Perrotey, P., & Joshi, S. C. (2018). Mode I fracture toughness and fractographic investigation of carbon fibre composites with liquid Methylmethacrylate thermoplastic matrix. Composites Part B: Engineering, 134, 246-253.
  • [13] Kinvi-Dossou G, Boumbimba RM, Bonfoh N, Garzon-Hernandez S, Garcia-Gonzalez D, Gerard P, Arias A. Innovative acrylic thermoplastic composites versus conventional composites: Improving the impact performances. Composite Structures. 2019 Jun 1;217:1-3.
  • [14] Kazemi ME, Shanmugam L, Lu D, Wang X, Wang B, Yang J. Mechanical properties and failure modes of hybrid fiber reinforced polymer composites with a novel liquid thermoplastic resin, Elium®. Composites Part A: Applied Science and Manufacturing. 2019 Oct 1;125:105523.
  • [15] Obande W, Mamalis D, Ray D, Yang L, Brádaigh CM. Mechanical and thermomechanical characterisation of vacuum-infused thermoplastic-and thermoset-based composites. Materials & Design. 2019 Aug 5;175:107828.
  • [16] Cousins, Dylan S. Advanced thermoplastic composites for wind turbine blade manufacturing. Colorado School of Mines, 2018.
  • [17] Teimouri, M., Hoseini, S. M., & Nadarajah, S. (2013). Comparison of estimation methods for the Weibull distribution. Statistics, 47(1), 93-109.
Year 2022, Volume: 5 Issue: 1, 7 - 12, 30.06.2022

Abstract

References

  • [1] Kosmann, N., Karsten, J., Schuett, M., Schulte, K., & Fiedler, B. (2015). Determining the effect of voids in GFRP on the damage behaviour under compression loading using acoustic emission. Composites Part B: Engineering, 70, 184-188. doi:10.1016/j.compositesb.2014.11.010.
  • [2] Bazli, M., Jafari, A., Ashrafi, H., Zhao, X., Bai, Y., & Raman, R. S. (2020). Effects of UV radiation, moisture and elevated temperature on mechanical properties of GFRP pultruded profiles. Construction and Building Materials, 231, 117137. doi:10.1016/j.conbuildmat.2019.117137.
  • [3] Bai, Y., & Keller, T. (2011). Delamination and kink-band failure of pultruded GFRP laminates under elevated temperatures and compression. Composite Structures, 93(2), 843-849. doi:10.1016/j.compstruct.2010.07.010.
  • [4] Yu, B., Till, V., & Thomas, K. (2007). Modeling of thermo-physical properties for FRP composites under elevated and high temperature. Composites Science and Technology, 67(15-16), 3098-3109. doi:10.1016/j.compscitech.2007.04.019.
  • [5] Biron, Michel. Thermoplastics and thermoplastic composites. William Andrew, 2018.
  • [6] Pini, T., Caimmi, F., Briatico-Vangosa, F., Frassine, R., & Rink, M. (2017). Fracture initiation and propagation in unidirectional CF composites based on thermoplastic acrylic resins. Engineering Fracture Mechanics, 184, 51-58.
  • [7] Kazemi, M. E., Shanmugam, L., Li, Z., Ma, R., Yang, L., & Yang, J. (2020). Low-velocity impact behaviors of a fully thermoplastic composite laminate fabricated with an innovative acrylic resin. Composite Structures, 250, 112604.
  • [8] Bhudolia, S. K., & Joshi, S. C. (2018). Low-velocity impact response of carbon fibre composites with novel liquid Methylmethacrylate thermoplastic matrix. Composite Structures, 203, 696-708.
  • [9] Obande, W., Ray, D., & Brádaigh, C. M. Ó. (2019). Viscoelastic and drop-weight impact properties of an acrylic-matrix composite and a conventional thermoset composite–A comparative study. Materials Letters, 238, 38-41.
  • [10] Boumbimba, R. M., Coulibaly, M., Khabouchi, A., Kinvi-Dossou, A., Bonfoh, N., & Gerard, P. (2017). Glass fibres reinforced acrylic thermoplastic resin-based tri-block copolymers composites: Low velocity impact response at various temperatures. Composite Structures, 160, 939-951.
  • [11] Kinvi-Dossou, G., Boumbimba, R. M., Bonfoh, N., Koutsawa, Y., Eccli, D., & Gerard, P. (2018). A numerical homogenization of E-glass/acrylic woven composite laminates: Application to low velocity impact. Composite Structures, 200, 540-554.
  • [12] Bhudolia, S. K., Perrotey, P., & Joshi, S. C. (2018). Mode I fracture toughness and fractographic investigation of carbon fibre composites with liquid Methylmethacrylate thermoplastic matrix. Composites Part B: Engineering, 134, 246-253.
  • [13] Kinvi-Dossou G, Boumbimba RM, Bonfoh N, Garzon-Hernandez S, Garcia-Gonzalez D, Gerard P, Arias A. Innovative acrylic thermoplastic composites versus conventional composites: Improving the impact performances. Composite Structures. 2019 Jun 1;217:1-3.
  • [14] Kazemi ME, Shanmugam L, Lu D, Wang X, Wang B, Yang J. Mechanical properties and failure modes of hybrid fiber reinforced polymer composites with a novel liquid thermoplastic resin, Elium®. Composites Part A: Applied Science and Manufacturing. 2019 Oct 1;125:105523.
  • [15] Obande W, Mamalis D, Ray D, Yang L, Brádaigh CM. Mechanical and thermomechanical characterisation of vacuum-infused thermoplastic-and thermoset-based composites. Materials & Design. 2019 Aug 5;175:107828.
  • [16] Cousins, Dylan S. Advanced thermoplastic composites for wind turbine blade manufacturing. Colorado School of Mines, 2018.
  • [17] Teimouri, M., Hoseini, S. M., & Nadarajah, S. (2013). Comparison of estimation methods for the Weibull distribution. Statistics, 47(1), 93-109.
There are 17 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering, Composite and Hybrid Materials
Journal Section Articles
Authors

Ali Taner Kuzu 0000-0001-5519-7240

Elifnur Kösemen 0000-0002-0719-4405

Aysu Hande Yücel 0000-0001-5006-1774

Mustafa Bakkal 0000-0002-6150-9762

Publication Date June 30, 2022
Acceptance Date January 31, 2022
Published in Issue Year 2022 Volume: 5 Issue: 1

Cite

APA Kuzu, A. T., Kösemen, E., Yücel, A. H., Bakkal, M. (2022). ANALYSIS OF MECHANICAL BEHAVIOR OF TERMOPLASTIC COMPOSITES. The International Journal of Materials and Engineering Technology, 5(1), 7-12.
AMA Kuzu AT, Kösemen E, Yücel AH, Bakkal M. ANALYSIS OF MECHANICAL BEHAVIOR OF TERMOPLASTIC COMPOSITES. TIJMET. June 2022;5(1):7-12.
Chicago Kuzu, Ali Taner, Elifnur Kösemen, Aysu Hande Yücel, and Mustafa Bakkal. “ANALYSIS OF MECHANICAL BEHAVIOR OF TERMOPLASTIC COMPOSITES”. The International Journal of Materials and Engineering Technology 5, no. 1 (June 2022): 7-12.
EndNote Kuzu AT, Kösemen E, Yücel AH, Bakkal M (June 1, 2022) ANALYSIS OF MECHANICAL BEHAVIOR OF TERMOPLASTIC COMPOSITES. The International Journal of Materials and Engineering Technology 5 1 7–12.
IEEE A. T. Kuzu, E. Kösemen, A. H. Yücel, and M. Bakkal, “ANALYSIS OF MECHANICAL BEHAVIOR OF TERMOPLASTIC COMPOSITES”, TIJMET, vol. 5, no. 1, pp. 7–12, 2022.
ISNAD Kuzu, Ali Taner et al. “ANALYSIS OF MECHANICAL BEHAVIOR OF TERMOPLASTIC COMPOSITES”. The International Journal of Materials and Engineering Technology 5/1 (June 2022), 7-12.
JAMA Kuzu AT, Kösemen E, Yücel AH, Bakkal M. ANALYSIS OF MECHANICAL BEHAVIOR OF TERMOPLASTIC COMPOSITES. TIJMET. 2022;5:7–12.
MLA Kuzu, Ali Taner et al. “ANALYSIS OF MECHANICAL BEHAVIOR OF TERMOPLASTIC COMPOSITES”. The International Journal of Materials and Engineering Technology, vol. 5, no. 1, 2022, pp. 7-12.
Vancouver Kuzu AT, Kösemen E, Yücel AH, Bakkal M. ANALYSIS OF MECHANICAL BEHAVIOR OF TERMOPLASTIC COMPOSITES. TIJMET. 2022;5(1):7-12.