Research Article
BibTex RIS Cite

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF THE USE OF ORGANIC AND INORGANIC MATERIALS MELTED WITH INFRARED RAYS FOR THERMAL ENERGY STORAGE

Year 2024, Volume: 7 Issue: 2, 85 - 99, 31.12.2024
https://doi.org/10.70858/tijmet.1541458

Abstract

In order to ensure energy sustainability, energy storage processes need to be investigated and developed. The original value of this study is the experimental and numerical investigation of the performance of infrared radiation and PCM on an innovative heat storage system. In a laboratory environment, the rays obtained from an infrared lamp are transferred by a conical concentrator to an organic as paraffin and Hitec salts as inorganic were melted and their use in thermal energy storage is investigated. In the case of heat storage, while the focal temperature was between (200-300) °C in the charging state, the highest temperatures of the upper region of the furnace of about 10 liters were measured as 87 °C and 240 °C for paraffin and Hitec, respectively, at the end of 4 hours. At the end of 4 hours in the discharge state, the upper region temperature of the Hitec salt in the furnace decreased from approximately 102 °C to 46 °C, while the paraffin decreased from 75 °C to 55 °C. When the mass flow rates for paraffin and Hitec are 0.047 and 0.061 g s-1, respectively, the first law of Thermodynamics efficiencies are calculated as 10% and 24.6%, respectively. As a result, it is observed that paraffin has a high heat storage capability in low temperature applications up to a limited temperature (80°C). Additionally, for thermal energy storage at medium and high temperatures, Hitec salt which has a low melting point and high specific heat capacity, can be used.

Ethical Statement

The authors declare no conflict of interest

Supporting Institution

The article was financially supported by the TÜBİTAK BİDEB and YÖK 100/2000 Doctoral project.

Thanks

We would like to thank TUBITAK and YOK.

References

  • Kraiem, M., Karkri, M., Fois, M., & Sobolciak, P., Thermophysical Characterization of Paraffins versus Temperature for Thermal Energy Storage, Buildings, 2023, 13(4):877
  • Gallo, A., Marzo, A., Fuentealba, E., & Alonso, E., High flux solar simulators for concentrated solar thermal research: A review, Reviews, Renewable and Sustainable Energy 77, 2017, 1385-1402
  • Ahmad, S., Hand, R., & Wieckert, C., Use of concentrated radiation for solar powered glass melting experiments, Solar Energy 109, 2014, 174-182
  • Sarı, A., & Karaipekli, A., Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material, Applied Thermal Engineering, 2007, 27(8-9):1271-1277
  • Akgun, M., Aydin, O., & Kaygusuz, K., Thermal energy storage behavior of a paraffin during melting and solidification. Energy Sources, Part A, 2007, 29(14):1315-1326
  • Arslan, B., & Ilbas, M., A numerical study on the melting behaviors of paraffin with and without Al2O3 nanoparticles, Journal of Polytechnic, 2021, 24(3): 1243-1248
  • Sinaringati, S., Putra, N., Amin, M., & Afriyanti, F., The utilization of paraffin and beeswax as heat energy storage in infant incubator, ARPN Journal of Engineering and Applied Sciences, 2016, 11(2):800-804
  • Pedrosa, P., Marcelo, T., Nogueira, C.A., Gomes, A., & Diamantino, T., Molten nitrate salts containing lithium as thermal energy storage media: a short review, (ECOS) Proceedings of the 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2018
  • Fernandez, A.G., Galleguillos, H., Fuentealba, E., & Perez, F.J., Thermal characterization of HITEC molten salt for energy storage in solar linear concentrated technology, Journal of Thermal Analysis and Calorimetry, 2015, 122,3-9
  • Lingayat, A., Das, P., Gilago, M.C., & V.P., C. A detail assessment of paraffin waxed thermal energy storage medium for solar dryers, Solar Energy, 2023, 261, 14-27
  • Chauhan, V., Yadav, A., & Soni, S., Simulation of Melting Process of a Phase Change Material (PCM) using ANSYS (Fluent), International Research Journal of Engineering and Technology (IRJET), 2017, 04(05):3289-3294
  • Coastal Chemical Company, HITEC Heat Transfer Salt Houston, HITEC Heat Transfer Salt, 2011
  • Ivenson, B., Broome, S., Kruizenga, A., & Cordaro, J. Thermal and Mechanical Properties of Nitrate St ate Thermal Storage Salts in the Solid-Phase, Solar Energy, 2012, 86, 2897-2911
  • Dinçer, İ., & Rosen, M., Thermal energy storage: Systems and applications (2. edition), Hoboken, N.J.: Wiley, 2011
  • Lane, G. A., and Lane, G.A. eds. Solar heat storage: latent heat materials. Vol. 1. Boca Raton, FL, USA: CRC press, 1983
  • Sharma, A., Tyagi, V. V., Chen, C. R., & Buddhi, D., Review on thermal energy storage with phase change materials and applications, India: Renewable and Sustainable Energy Reviews, 2009, 13(2):318-345
  • Subramaniam, S.B., & Senthil, R., Heat transfer enhancement of concentrated solar absorber using hollow cylindrical fins filled with phase change material, Interna tional journal of hydrogen energy, 2021, 46(43):22344-22355
  • Sansaniwal, S. K., Sharma, V., & Mathur, J., Energy and exergy analyses of various typical solar energy applications: A comprehensive review, Renewable and Sustainable Energy Reviews, 2018, 82, 1576–1601
  • Stine, W., & Diver, R., A Compendium of Solar Dish/Stirling Technology, California, US: Sandia National Laboratories, 1994
  • Castellanos, L. M., Caballero, G. C., Cobas, V. M., Lora, E. S., & Reyes, A. M. Mathematical modeling of the geometrical sizing and thermal performance of a Dish/Stirling system for power generation. Renewable Energy, 2017, 107, 23-35
  • Özcan, A.K., and Demirtaş, C., Obtaining high temperatures with ring array type (Rac) solar concentrators. 23rd Congress on Thermal Science and Technology with International Participation (ULIBTK'21), 2021, 1, 640-646
  • Tetreault-friend, m., Gray, l., Berdibek, s., Mckrell, t., & Slocum, a., Optical properties of high temperature molten salt mixtures for volumetrically absorbing solar thermal receiver applications, Solar Energy, 2017, 153, 238-248
  • Ambarita, H., Abdullah, I., Siregar, C.A., Siregar, R.E.T., Ronowikarto, A.D., Experimental Study on Melting and Solidification of Phase Change Material Thermal Storage, IOP Conference Series: Materials Science and Engineering, 2017, 180, 012030
  • Xiao, X., Jia, H., Wen, D., & Zhao, X., Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite, Energy, 2020, 192, 116593
  • Jaramillo, O. "Transporte de energía solar concentrada a través de fibras ópticas: acoplamiento fibra-concentrador y estudio térmico." Bachelor Thesis. Universidad Autónoma de Morelos. Estado de Morelos. México, 1998
  • Ma, M., Ai, Q., and Xie, M. Optical properties of four types paraffin, Optik - International Journal for Light and Electron Optics, 2022, 249, 168277
  • Astarita, T.; Carlomagno, G.M. Infrared Thermography for Thermo–Fluid–Dynamics, Springer: 2013
  • Mark, F.H.; Kroschwitz, J.I. Encyclopedia of Polymer Science and Engineering; Wiley: New York, NY, USA, 1989,17
  • Migliorino, M.T., Bianchi, D., and Nasuti, F., Numerical Simulations of the Internal Ballistics of Paraffin–Oxygen Hybrid Rockets at Different Scales, Aerospace, 2021, 8(8): 213
  • Farnham, C., Nakao, M., Nishioka, M., and Nabeshima, M., Quantification of the Effect of Cooling Mists on Individual Thermal Comfort, The seventh International Conference on Urban Climate, 2009
  • Xie, M., Zhu, Y., Liu, Y., Yuan, Y., and Tan, H., Measurement of spectral radiative characteristics of molten salt at high temperature using emission method, Applied Thermal Engineering 2019, 149, 151–164
  • Darzi, A.A.R., Moosania, S.M. Tan, F.L., Farhadi, M., Numerical investigation of free-cooling system using plate type PCM storage, International Communications in Heat and Mass Transfer, 2013, 48, 155–163
  • Zhang, P., Xiao, X., Meng, Z., & Li, M., Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement. Applied Energy, 2015, 137, 758–772
  • Voller, V., and Prakash, C., A Fixed-Grid Numerical Modeling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems, Int. J. Heat Mass Transfer 1987, 30, 1709 -1720
  • Hassab, M., Sorour, M., Mansour, M., and Zaytoun, M., Effect of volume expansion on the melting process’s thermal behavior, Applied Thermal Engineering, 2017, 115, 350–362
  • Kline, S., and McClinton, F., Describing Uncertainties in Single-Sample Experiment, Mechanical engineering, 1953, 75, 3-9
  • Sinaringati, S., Putra, N., Amin, M., and Afriyanti, F., The utlization of paraffin and beeswax as heat energy storage in infant incubator, ARPN Journal of Engineering and Applied Sciences, 2016, 11(2):800-804
  • Bellan, S., Alonso, E., Gomez-Garcia, F., Perez-Rabago, C., Gonzalez-Aguilar, J., Romero, M., Thermal performance of lab-scale solar reactor designed for kinetics analysis at high radiation fluxes, Chemical Engineering Science, 2013, 101, 81–89
  • Kuhn, P., and Hunt, A., A new solar simulator to study high temperature solid-state reactions with highly concentrated radiation, Solar Energy Materials, 1991, 24, 742–750
  • Rosen, M., and Dincer, I., Exergoeconomic analysis of power plants operating on various fuels, Applied Thermal Engineering 2003, 23, 643–658
  • Turchi, C., Mehos, M., Ho, C. K.& Kolb, G. J. Current and future costs for parabolic trough and power tower systems in the US market, Conference paper NREL CP, 2010, 5500-49303
  • Roubaud, E. G., Pérez-Osorio, D., Prieto, C. Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts, Renewable and Sustainable Energy Reviews, 2017, 80, 133–148
Year 2024, Volume: 7 Issue: 2, 85 - 99, 31.12.2024
https://doi.org/10.70858/tijmet.1541458

Abstract

References

  • Kraiem, M., Karkri, M., Fois, M., & Sobolciak, P., Thermophysical Characterization of Paraffins versus Temperature for Thermal Energy Storage, Buildings, 2023, 13(4):877
  • Gallo, A., Marzo, A., Fuentealba, E., & Alonso, E., High flux solar simulators for concentrated solar thermal research: A review, Reviews, Renewable and Sustainable Energy 77, 2017, 1385-1402
  • Ahmad, S., Hand, R., & Wieckert, C., Use of concentrated radiation for solar powered glass melting experiments, Solar Energy 109, 2014, 174-182
  • Sarı, A., & Karaipekli, A., Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material, Applied Thermal Engineering, 2007, 27(8-9):1271-1277
  • Akgun, M., Aydin, O., & Kaygusuz, K., Thermal energy storage behavior of a paraffin during melting and solidification. Energy Sources, Part A, 2007, 29(14):1315-1326
  • Arslan, B., & Ilbas, M., A numerical study on the melting behaviors of paraffin with and without Al2O3 nanoparticles, Journal of Polytechnic, 2021, 24(3): 1243-1248
  • Sinaringati, S., Putra, N., Amin, M., & Afriyanti, F., The utilization of paraffin and beeswax as heat energy storage in infant incubator, ARPN Journal of Engineering and Applied Sciences, 2016, 11(2):800-804
  • Pedrosa, P., Marcelo, T., Nogueira, C.A., Gomes, A., & Diamantino, T., Molten nitrate salts containing lithium as thermal energy storage media: a short review, (ECOS) Proceedings of the 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2018
  • Fernandez, A.G., Galleguillos, H., Fuentealba, E., & Perez, F.J., Thermal characterization of HITEC molten salt for energy storage in solar linear concentrated technology, Journal of Thermal Analysis and Calorimetry, 2015, 122,3-9
  • Lingayat, A., Das, P., Gilago, M.C., & V.P., C. A detail assessment of paraffin waxed thermal energy storage medium for solar dryers, Solar Energy, 2023, 261, 14-27
  • Chauhan, V., Yadav, A., & Soni, S., Simulation of Melting Process of a Phase Change Material (PCM) using ANSYS (Fluent), International Research Journal of Engineering and Technology (IRJET), 2017, 04(05):3289-3294
  • Coastal Chemical Company, HITEC Heat Transfer Salt Houston, HITEC Heat Transfer Salt, 2011
  • Ivenson, B., Broome, S., Kruizenga, A., & Cordaro, J. Thermal and Mechanical Properties of Nitrate St ate Thermal Storage Salts in the Solid-Phase, Solar Energy, 2012, 86, 2897-2911
  • Dinçer, İ., & Rosen, M., Thermal energy storage: Systems and applications (2. edition), Hoboken, N.J.: Wiley, 2011
  • Lane, G. A., and Lane, G.A. eds. Solar heat storage: latent heat materials. Vol. 1. Boca Raton, FL, USA: CRC press, 1983
  • Sharma, A., Tyagi, V. V., Chen, C. R., & Buddhi, D., Review on thermal energy storage with phase change materials and applications, India: Renewable and Sustainable Energy Reviews, 2009, 13(2):318-345
  • Subramaniam, S.B., & Senthil, R., Heat transfer enhancement of concentrated solar absorber using hollow cylindrical fins filled with phase change material, Interna tional journal of hydrogen energy, 2021, 46(43):22344-22355
  • Sansaniwal, S. K., Sharma, V., & Mathur, J., Energy and exergy analyses of various typical solar energy applications: A comprehensive review, Renewable and Sustainable Energy Reviews, 2018, 82, 1576–1601
  • Stine, W., & Diver, R., A Compendium of Solar Dish/Stirling Technology, California, US: Sandia National Laboratories, 1994
  • Castellanos, L. M., Caballero, G. C., Cobas, V. M., Lora, E. S., & Reyes, A. M. Mathematical modeling of the geometrical sizing and thermal performance of a Dish/Stirling system for power generation. Renewable Energy, 2017, 107, 23-35
  • Özcan, A.K., and Demirtaş, C., Obtaining high temperatures with ring array type (Rac) solar concentrators. 23rd Congress on Thermal Science and Technology with International Participation (ULIBTK'21), 2021, 1, 640-646
  • Tetreault-friend, m., Gray, l., Berdibek, s., Mckrell, t., & Slocum, a., Optical properties of high temperature molten salt mixtures for volumetrically absorbing solar thermal receiver applications, Solar Energy, 2017, 153, 238-248
  • Ambarita, H., Abdullah, I., Siregar, C.A., Siregar, R.E.T., Ronowikarto, A.D., Experimental Study on Melting and Solidification of Phase Change Material Thermal Storage, IOP Conference Series: Materials Science and Engineering, 2017, 180, 012030
  • Xiao, X., Jia, H., Wen, D., & Zhao, X., Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite, Energy, 2020, 192, 116593
  • Jaramillo, O. "Transporte de energía solar concentrada a través de fibras ópticas: acoplamiento fibra-concentrador y estudio térmico." Bachelor Thesis. Universidad Autónoma de Morelos. Estado de Morelos. México, 1998
  • Ma, M., Ai, Q., and Xie, M. Optical properties of four types paraffin, Optik - International Journal for Light and Electron Optics, 2022, 249, 168277
  • Astarita, T.; Carlomagno, G.M. Infrared Thermography for Thermo–Fluid–Dynamics, Springer: 2013
  • Mark, F.H.; Kroschwitz, J.I. Encyclopedia of Polymer Science and Engineering; Wiley: New York, NY, USA, 1989,17
  • Migliorino, M.T., Bianchi, D., and Nasuti, F., Numerical Simulations of the Internal Ballistics of Paraffin–Oxygen Hybrid Rockets at Different Scales, Aerospace, 2021, 8(8): 213
  • Farnham, C., Nakao, M., Nishioka, M., and Nabeshima, M., Quantification of the Effect of Cooling Mists on Individual Thermal Comfort, The seventh International Conference on Urban Climate, 2009
  • Xie, M., Zhu, Y., Liu, Y., Yuan, Y., and Tan, H., Measurement of spectral radiative characteristics of molten salt at high temperature using emission method, Applied Thermal Engineering 2019, 149, 151–164
  • Darzi, A.A.R., Moosania, S.M. Tan, F.L., Farhadi, M., Numerical investigation of free-cooling system using plate type PCM storage, International Communications in Heat and Mass Transfer, 2013, 48, 155–163
  • Zhang, P., Xiao, X., Meng, Z., & Li, M., Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement. Applied Energy, 2015, 137, 758–772
  • Voller, V., and Prakash, C., A Fixed-Grid Numerical Modeling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems, Int. J. Heat Mass Transfer 1987, 30, 1709 -1720
  • Hassab, M., Sorour, M., Mansour, M., and Zaytoun, M., Effect of volume expansion on the melting process’s thermal behavior, Applied Thermal Engineering, 2017, 115, 350–362
  • Kline, S., and McClinton, F., Describing Uncertainties in Single-Sample Experiment, Mechanical engineering, 1953, 75, 3-9
  • Sinaringati, S., Putra, N., Amin, M., and Afriyanti, F., The utlization of paraffin and beeswax as heat energy storage in infant incubator, ARPN Journal of Engineering and Applied Sciences, 2016, 11(2):800-804
  • Bellan, S., Alonso, E., Gomez-Garcia, F., Perez-Rabago, C., Gonzalez-Aguilar, J., Romero, M., Thermal performance of lab-scale solar reactor designed for kinetics analysis at high radiation fluxes, Chemical Engineering Science, 2013, 101, 81–89
  • Kuhn, P., and Hunt, A., A new solar simulator to study high temperature solid-state reactions with highly concentrated radiation, Solar Energy Materials, 1991, 24, 742–750
  • Rosen, M., and Dincer, I., Exergoeconomic analysis of power plants operating on various fuels, Applied Thermal Engineering 2003, 23, 643–658
  • Turchi, C., Mehos, M., Ho, C. K.& Kolb, G. J. Current and future costs for parabolic trough and power tower systems in the US market, Conference paper NREL CP, 2010, 5500-49303
  • Roubaud, E. G., Pérez-Osorio, D., Prieto, C. Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts, Renewable and Sustainable Energy Reviews, 2017, 80, 133–148
There are 42 citations in total.

Details

Primary Language English
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Articles
Authors

Ali Kemal Özcan 0000-0001-9680-1889

Ömer Öksüz 0000-0003-4027-4666

Cevdet Demirtaş 0000-0002-9099-3573

Early Pub Date December 31, 2024
Publication Date December 31, 2024
Submission Date September 12, 2024
Acceptance Date December 30, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Özcan, A. K., Öksüz, Ö., & Demirtaş, C. (2024). EXPERIMENTAL AND NUMERICAL INVESTIGATION OF THE USE OF ORGANIC AND INORGANIC MATERIALS MELTED WITH INFRARED RAYS FOR THERMAL ENERGY STORAGE. The International Journal of Materials and Engineering Technology, 7(2), 85-99. https://doi.org/10.70858/tijmet.1541458