Review
BibTex RIS Cite

Genetic Improvements in Aquaculture

Year 2024, Volume: 2 Issue: 1-2, 16 - 25, 31.12.2024
https://doi.org/10.62425/tjau.1570599

Abstract

In the shift from wild harvesting to agricultural production, genetic enhancement plays a crucial role in the development of a product. The initial phase typically involves domestication, followed by further genetic modifications aimed at improving production traits. Aquaculturists, like their terrestrial counterparts, prioritize traits such as rapid growth, increased efficiency, disease resistance, and high quality. Various tools are utilized to achieve these genetic enhancements. This article seeks to assess the present state and obstacles concerning the administration of farmed aquatic genetic resources while offering suggestions for enhancement.

References

  • Abdelrahman, H., ElHady, M., Alcivar-Warren, A., & Rexroad, C. E. (2017). Aquaculture genomics, genetics and breeding in the United States: Current status, challenges, and priorities for future research. BMC Genomics, 18(Suppl 1), 191. https://doi.org/10.1186/s12864-017-3557-1
  • Alemu, A., Åstrand, J., Montesinos-Lopez, O. A., y Sanchez, J. I., Fernandez-Gonzalez, J., Tadesse, W., ... & Chawade, A. (2024). Genomic selection in plant breeding: Key factors shaping two decades of progress. Molecular Plant.
  • Allen, M. S., Sheaffer, W., Porak, W. F., & Crawford, S. (2002). Growth and mortality of Largemouth Bass in Florida waters: Implications for use of length limits. In D. P. Philipp & M. S. Ridgway (Eds.), Black bass: Ecology, conservation, and management (Symposium 31, pp. 559–566). American Fisheries Society.
  • Bishaw, Z., & Turner, M. (2008). Linking participatory plant breeding to the seed supply system. Euphytica, 163, 31-44.
  • Boudry, P., Allal, F., Aslam, M. L., Bargelloni, L., Bean, T. P., Brard-Fudulea, S., ... & Houston, R. D. (2021). Current status and potential of genomic selection to improve selective breeding in the main aquaculture species of International Council for the Exploration of the Sea (ICES) member countries. Aquaculture Reports, 20, 100700.
  • Budhlakoti, N., Kushwaha, A. K., Rai, A., Chaturvedi, K. K., Kumar, A., Pradhan, A. K., ... & Kumar, S. (2022). Genomic selection: A tool for accelerating the efficiency of molecular breeding for development of climate-resilient crops. Frontiers in Genetics, 13, 832153.
  • Campbell, N., Harmon, S., & Narum, S. R. (2016). Genotyping in thousands by sequencing (GT-seq): A low-cost, high-throughput, targeted SNP genotyping method. Journal of Animal Science, 94, 16-16.
  • Doublet, A. C., Restoux, G., Fritz, S., Balberini, L., Fayolle, G., Hozé, C., ... & Croiseau, P. (2020). Intensified use of reproductive technologies and reduced dimensions of breeding schemes put genetic diversity at risk in dairy cattle breeds. Animals, 10(10), 1903.
  • Dunham, R. A., Majumdar, K., Hallerman, E., Bartley, D., Mair, G., Hulata, G., ... & Hörstgen-Schwark, G. (2000). Review of the status of aquaculture genetics. In Aquaculture in the Third Millennium. Technical Proceedings of the Conference on Aquaculture in the Third Millennium, Bangkok, Thailand (Vol. 20, p. 25).
  • Gamage, A., Gangahagedara, R., Gamage, J., Jayasinghe, N., Kodikara, N., Suraweera, P., & Merah, O. (2023). Role of organic farming for achieving sustainability in agriculture. Farming System, 1(1), 100005.
  • Gjedrem, T., & Baranski, M. (2010). Selective breeding in aquaculture: an introduction (Vol. 10). Springer Science & Business Media.
  • Gjedrem, T., Robinson, N., & Rye, M. (2012). The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture, 350-353, 117–129. https://doi.org/10.1016/j.aquaculture.2012.04.008
  • Hallerman, E. (2021). Genome editing in cultured fishes. CABI Agric Biosci 2, 46 https://doi.org/10.1186/s43170-021-00066-3
  • Hasan, N., Choudhary, S., Naaz, N., Sharma, N., & Laskar, R. A. (2021). Recent advancements in molecular marker-assisted selection and applications in plant breeding programs. Journal of Genetic Engineering and Biotechnology, 19(1), 128.
  • Hely, F. S., Amer, P. R., Walker, S. P., & Symonds, J. E. (2013). Optimized parent selection and minimum inbreeding mating in small aquaculture breeding schemes: a simulation study. animal, 7(1), 1-10.
  • Houston, R. D., Bean, T. P., Macqueen, D. J., Gundappa, M. K., Jin, Y. H., Jenkins, T. L., ... & McAndrew, B. J. (2020). Genomics in aquaculture to better understand species biology and accelerate genetic progress. Nature Reviews Genetics, 21(7), 389–409. https://doi.org/10.1038/s41576-020-0227-y
  • Jannink, J. L., Lorenz, A. J., & Iwata, H. (2010). Genomic selection in plant breeding: from theory to practice. Briefings in functional genomics, 9(2), 166-177
  • Lorenzen, K., Beveridge, M. C. M., & Mangel, M. (2012). Cultured fish: Integrative biology and management of domestication and interactions with wild fish. Fish and Fisheries, 13(3), 295–311. https://doi.org/10.1111/j.1467-2979.2011.00467.x
  • Manzoor, S., Nabi, S. U., Rather, T. R., Gani, G., Mir, Z. A., Wani, A. W., ... & Manzar, N. (2024). Advancing crop disease resistance through genome editing: a promising approach for enhancing agricultural production. Frontiers in Genome Editing, 6, 1399051.
  • Rasal, K. D., Kumar, P. V., Asgolkar, P., Shinde, S., Dhere, S., Siriyappagouder, P., ... & Nagpure, N. (2024). Single-Nucleotide Polymorphism (SNP) array: an array of hope for genetic improvement of aquatic species and fisheries management. Blue Biotechnology, 1(1), 3.
  • Regan, T., Bean, T. P., Ellis, T., Davie, A., Carboni, S., Migaud, H., & Houston, R. D. (2021). Genetic improvement technologies to support the sustainable growth of UK aquaculture. Reviews in aquaculture, 13(4), 1958-1985.
  • Shikuku, K. M., Tran, N., Joffre, O. M., Islam, A. H. M. S., Barman, B. K., Ali, S., & Rossignoli, C. M. (2021). Lock-ins to the dissemination of genetically improved fish seeds. Agricultural Systems, 188, 103042.
  • Sinha, D., Maurya, A. K., Abdi, G., Majeed, M., Agarwal, R., Mukherjee, R., ... & Chen, J. T. (2023). Integrated genomic selection for accelerating breeding programs of climate-smart cereals. Genes, 14(7), 1484.
  • Sonesson, A. K., Hallerman, E., Humphries, F., Hilsdorf, A. W. S., Leskien, D., Rosendal, K., ... & Mair, G. C. (2023). Sustainable management and improvement of genetic resources for aquaculture. Journal of the World Aquaculture Society, 54(2), 364-396.
  • Varshney, R. K., Bohra, A., Yu, J., Graner, A., Zhang, Q., & Sorrells, M. E. (2021). Designing future crops: genomics-assisted breeding comes of age. Trends in Plant Science, 26(6), 631-649.
  • Wang, D., Salehian-Dehkordi, H., Suo, L., & Lv, F. (2023). Impacts of population size and domestication process on genetic diversity and genetic load in genus Ovis. Genes, 14(10), 1977.
  • Xu, Y., Li, P., Zou, C., Lu, Y., Xie, C., Zhang, X., ... & Olsen, M. S. (2017). Enhancing genetic gain in the era of molecular breeding. Journal of Experimental Botany, 68(11), 2641- 2666.
  • Yadav NK, Patel AB, Singh SK, Mehta NK, Anand V, Lal J, Dekari D, Devi NC. Climate change effects on aquaculture production and its sustainable management through climate-resilient adaptation strategies: a review. Environ Sci Pollut Res Int. 2024 May;31(22):31731-31751. doi: 10.1007/s11356-024-33397-5. Epub 2024 Apr 23. PMID: 38652188.
  • Yáñez, J. M., Newman, S., & Houston, R. D. (2015). Genomics in aquaculture to better understand species biology and accelerate genetic progress. Frontiers in Genetics, 6, 128. https://doi.org/10.3389/fgene.2015.00128 .
  • Zhu, M.; Sumana, S.L.; Abdullateef, M.M.; Falayi, O.C.; Shui, Y.; Zhang, C.; Zhu, J.; Su, S. (2024) CRISPR/Cas9 Technology for Enhancing Desirable Traits of Fish Species in Aquaculture. Int. J. Mol. Sci., 25, 9299. https://doi.org/10.3390/ijms25179299

Genetic Improvements in Aquaculture

Year 2024, Volume: 2 Issue: 1-2, 16 - 25, 31.12.2024
https://doi.org/10.62425/tjau.1570599

Abstract

In the shift from wild harvesting to agricultural production, genetic enhancement plays a crucial role in the development of a product. The initial phase typically involves domestication, followed by further genetic modifications aimed at improving production traits. Aquaculturists, like their terrestrial counterparts, prioritize traits such as rapid growth, increased efficiency, disease resistance, and high quality. Various tools are utilized to achieve these genetic enhancements. This article seeks to assess the present state and obstacles concerning the administration of farmed aquatic genetic resources while offering suggestions for enhancement.

References

  • Abdelrahman, H., ElHady, M., Alcivar-Warren, A., & Rexroad, C. E. (2017). Aquaculture genomics, genetics and breeding in the United States: Current status, challenges, and priorities for future research. BMC Genomics, 18(Suppl 1), 191. https://doi.org/10.1186/s12864-017-3557-1
  • Alemu, A., Åstrand, J., Montesinos-Lopez, O. A., y Sanchez, J. I., Fernandez-Gonzalez, J., Tadesse, W., ... & Chawade, A. (2024). Genomic selection in plant breeding: Key factors shaping two decades of progress. Molecular Plant.
  • Allen, M. S., Sheaffer, W., Porak, W. F., & Crawford, S. (2002). Growth and mortality of Largemouth Bass in Florida waters: Implications for use of length limits. In D. P. Philipp & M. S. Ridgway (Eds.), Black bass: Ecology, conservation, and management (Symposium 31, pp. 559–566). American Fisheries Society.
  • Bishaw, Z., & Turner, M. (2008). Linking participatory plant breeding to the seed supply system. Euphytica, 163, 31-44.
  • Boudry, P., Allal, F., Aslam, M. L., Bargelloni, L., Bean, T. P., Brard-Fudulea, S., ... & Houston, R. D. (2021). Current status and potential of genomic selection to improve selective breeding in the main aquaculture species of International Council for the Exploration of the Sea (ICES) member countries. Aquaculture Reports, 20, 100700.
  • Budhlakoti, N., Kushwaha, A. K., Rai, A., Chaturvedi, K. K., Kumar, A., Pradhan, A. K., ... & Kumar, S. (2022). Genomic selection: A tool for accelerating the efficiency of molecular breeding for development of climate-resilient crops. Frontiers in Genetics, 13, 832153.
  • Campbell, N., Harmon, S., & Narum, S. R. (2016). Genotyping in thousands by sequencing (GT-seq): A low-cost, high-throughput, targeted SNP genotyping method. Journal of Animal Science, 94, 16-16.
  • Doublet, A. C., Restoux, G., Fritz, S., Balberini, L., Fayolle, G., Hozé, C., ... & Croiseau, P. (2020). Intensified use of reproductive technologies and reduced dimensions of breeding schemes put genetic diversity at risk in dairy cattle breeds. Animals, 10(10), 1903.
  • Dunham, R. A., Majumdar, K., Hallerman, E., Bartley, D., Mair, G., Hulata, G., ... & Hörstgen-Schwark, G. (2000). Review of the status of aquaculture genetics. In Aquaculture in the Third Millennium. Technical Proceedings of the Conference on Aquaculture in the Third Millennium, Bangkok, Thailand (Vol. 20, p. 25).
  • Gamage, A., Gangahagedara, R., Gamage, J., Jayasinghe, N., Kodikara, N., Suraweera, P., & Merah, O. (2023). Role of organic farming for achieving sustainability in agriculture. Farming System, 1(1), 100005.
  • Gjedrem, T., & Baranski, M. (2010). Selective breeding in aquaculture: an introduction (Vol. 10). Springer Science & Business Media.
  • Gjedrem, T., Robinson, N., & Rye, M. (2012). The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture, 350-353, 117–129. https://doi.org/10.1016/j.aquaculture.2012.04.008
  • Hallerman, E. (2021). Genome editing in cultured fishes. CABI Agric Biosci 2, 46 https://doi.org/10.1186/s43170-021-00066-3
  • Hasan, N., Choudhary, S., Naaz, N., Sharma, N., & Laskar, R. A. (2021). Recent advancements in molecular marker-assisted selection and applications in plant breeding programs. Journal of Genetic Engineering and Biotechnology, 19(1), 128.
  • Hely, F. S., Amer, P. R., Walker, S. P., & Symonds, J. E. (2013). Optimized parent selection and minimum inbreeding mating in small aquaculture breeding schemes: a simulation study. animal, 7(1), 1-10.
  • Houston, R. D., Bean, T. P., Macqueen, D. J., Gundappa, M. K., Jin, Y. H., Jenkins, T. L., ... & McAndrew, B. J. (2020). Genomics in aquaculture to better understand species biology and accelerate genetic progress. Nature Reviews Genetics, 21(7), 389–409. https://doi.org/10.1038/s41576-020-0227-y
  • Jannink, J. L., Lorenz, A. J., & Iwata, H. (2010). Genomic selection in plant breeding: from theory to practice. Briefings in functional genomics, 9(2), 166-177
  • Lorenzen, K., Beveridge, M. C. M., & Mangel, M. (2012). Cultured fish: Integrative biology and management of domestication and interactions with wild fish. Fish and Fisheries, 13(3), 295–311. https://doi.org/10.1111/j.1467-2979.2011.00467.x
  • Manzoor, S., Nabi, S. U., Rather, T. R., Gani, G., Mir, Z. A., Wani, A. W., ... & Manzar, N. (2024). Advancing crop disease resistance through genome editing: a promising approach for enhancing agricultural production. Frontiers in Genome Editing, 6, 1399051.
  • Rasal, K. D., Kumar, P. V., Asgolkar, P., Shinde, S., Dhere, S., Siriyappagouder, P., ... & Nagpure, N. (2024). Single-Nucleotide Polymorphism (SNP) array: an array of hope for genetic improvement of aquatic species and fisheries management. Blue Biotechnology, 1(1), 3.
  • Regan, T., Bean, T. P., Ellis, T., Davie, A., Carboni, S., Migaud, H., & Houston, R. D. (2021). Genetic improvement technologies to support the sustainable growth of UK aquaculture. Reviews in aquaculture, 13(4), 1958-1985.
  • Shikuku, K. M., Tran, N., Joffre, O. M., Islam, A. H. M. S., Barman, B. K., Ali, S., & Rossignoli, C. M. (2021). Lock-ins to the dissemination of genetically improved fish seeds. Agricultural Systems, 188, 103042.
  • Sinha, D., Maurya, A. K., Abdi, G., Majeed, M., Agarwal, R., Mukherjee, R., ... & Chen, J. T. (2023). Integrated genomic selection for accelerating breeding programs of climate-smart cereals. Genes, 14(7), 1484.
  • Sonesson, A. K., Hallerman, E., Humphries, F., Hilsdorf, A. W. S., Leskien, D., Rosendal, K., ... & Mair, G. C. (2023). Sustainable management and improvement of genetic resources for aquaculture. Journal of the World Aquaculture Society, 54(2), 364-396.
  • Varshney, R. K., Bohra, A., Yu, J., Graner, A., Zhang, Q., & Sorrells, M. E. (2021). Designing future crops: genomics-assisted breeding comes of age. Trends in Plant Science, 26(6), 631-649.
  • Wang, D., Salehian-Dehkordi, H., Suo, L., & Lv, F. (2023). Impacts of population size and domestication process on genetic diversity and genetic load in genus Ovis. Genes, 14(10), 1977.
  • Xu, Y., Li, P., Zou, C., Lu, Y., Xie, C., Zhang, X., ... & Olsen, M. S. (2017). Enhancing genetic gain in the era of molecular breeding. Journal of Experimental Botany, 68(11), 2641- 2666.
  • Yadav NK, Patel AB, Singh SK, Mehta NK, Anand V, Lal J, Dekari D, Devi NC. Climate change effects on aquaculture production and its sustainable management through climate-resilient adaptation strategies: a review. Environ Sci Pollut Res Int. 2024 May;31(22):31731-31751. doi: 10.1007/s11356-024-33397-5. Epub 2024 Apr 23. PMID: 38652188.
  • Yáñez, J. M., Newman, S., & Houston, R. D. (2015). Genomics in aquaculture to better understand species biology and accelerate genetic progress. Frontiers in Genetics, 6, 128. https://doi.org/10.3389/fgene.2015.00128 .
  • Zhu, M.; Sumana, S.L.; Abdullateef, M.M.; Falayi, O.C.; Shui, Y.; Zhang, C.; Zhu, J.; Su, S. (2024) CRISPR/Cas9 Technology for Enhancing Desirable Traits of Fish Species in Aquaculture. Int. J. Mol. Sci., 25, 9299. https://doi.org/10.3390/ijms25179299
There are 30 citations in total.

Details

Primary Language English
Subjects Fish Physiology and Genetics
Journal Section Reviews
Authors

G. Brindha Sankaran 0009-0000-9413-0567

Aditya Mandal 0009-0006-9715-7822

Early Pub Date December 23, 2024
Publication Date December 31, 2024
Submission Date October 22, 2024
Acceptance Date November 28, 2024
Published in Issue Year 2024 Volume: 2 Issue: 1-2

Cite

APA Sankaran, G. B., & Mandal, A. (2024). Genetic Improvements in Aquaculture. The Trout Journal of Atatürk University, 2(1-2), 16-25. https://doi.org/10.62425/tjau.1570599

The Trout Journal of Atatürk University (Atatürk Üniversitesi Alabalık Dergisi)

Creative Commons Lisansı
Bu eser Creative Commons Atıf-GayriTicari-AynıLisanslaPaylaş 4.0 Uluslararası Lisansı ile lisanslanmıştır.