Research Article
BibTex RIS Cite

Antimicrobial Potential and Molecular Characterisation of Endophytic Fungi Isolated from Conyza bonariensis from Tanzania

Year 2023, Volume: 7 Issue: 2, 69 - 82, 07.09.2023
https://doi.org/10.26650/tjbc.1277130

Abstract

Objective: The harnessing of medicinal plants for the treatment of infectious diseases has an environmental concern, and therefore environmentally friendly alternative sources like harnessing the potential of endophytes are of paramount importance. The present study aimed to evaluate chemical composition and antimicrobial activity of crude extracts of endophytic fungi isolated from C. bonariensis (L.) in Tanzania. Materials and Methods: Initially, endophytic fungi were isolated from C. bonariensis (L.) and characterized, followed by mass cultivation and the harvesting of crude extracts. Then crude extracts were tested against selected microorganisms: Two Gram-positive bacteria, Staphylococcus aureus and Bacillus subtilis; Two Gram-negative bacteria, Escherichia coli and Salmonella typhi, and a yeast Candida albicans. Gas Chromatography-Mass Spectrometry analyzed the chemical composition of crude extracts. Results: Five endophytic fungi (Talaromyces sp., Penicillium daleae, Neurospora crassa, Talaromyces radicus 1 and Talaromyces radicus 2) were isolated. Furthermore, crude extract of N. crassa had the highest antimicrobial activity with the range of MIC found to be 1.5 μg/mL > MIC > 0.78 μg/mL for all tested microorganisms except for S. aureus where the range of MIC was 40 μg/mL>MIC>20 μg/mL. On the other hand, the crude extract of Talaromyces radicus 1 had the lowest MIC range (100 mg/mL>MIC>50 mg/mL). The GC-MS results demonstrated variation in chemical composition with proved various biological properties. Conclusions: Ethyl acetate crude extracts of N. crassa demonstrated the highest antimicrobial activity, therefore warranting further exploration of the endophyte and their crude extracts for various medicinal and industrial applications. Further studies on the characterization of pure compounds, which may be responsible for the antimicrobial activity that was observed, are urgently needed.

Supporting Institution

None

References

  • Amiri, N. & Tibuhwa, D.D. (2020). Antimicrobial activities of endophytic fungal crude extracts isolated from cashew tree (Anacardium occidentale). Tanzania Journal of Science, 47, 1102-1113. google scholar
  • Abdollahi, A., Fasihi-ramandi, M., Kouhpayeh, S., Najafipour, S., Meshkibaf, M., Naghdi, M. & Ahmadi, E. (2012). Antimicrobial effect of 15 medicinal plant species and their dependency on climatic conditions of growth in different geographical and ecological areas of Fars province. Zahedan Journal of Research in Medical Sciences, 14(5), e93406. google scholar
  • Abu-Khadra, A.S., Farag, R.S. & Abdel-Hady, A.E.D.M. (2016). Synthesis, characterization and antimicrobial activity of Schiff base (E)-N-(4-(2-Hydroxybenzylideneamino) Phenylsulfonyl) acetamide metal complexes. American Journal of Analytical Chem istry 7, 233-245. https://doi.org/10.4236/ajac.2016.73020. google scholar
  • Al-Abd, N.M., Nor, Z.M., Mansor, M., Azhar, F., Hasan, M.S. & Kassim, M. (2015) Antioxidant, antibacterial activity, and phytochemical characterization of Melaleuca cajuputi extract. BMC Complementary Medicine, 15. ID385. https://doi. org/10.1186/s12906-015-0914-y google scholar
  • Albadawi, D.A., Mothana, R.A., Khaled, J.M., Ashour, A.E., Kumar, A., Ahmad, S.F., Al-Said, M.S., Al-Rehaily, A.J. & Almusayeib, N.M. (2017). Antimicrobial, anticancer, and antioxidant compounds from Premna resinosa growing in Saudi Arabia. Pharmaceutical Biology, 55, 1759-1766. https://doi.org/10.1 080/13880209.2017.1322617 google scholar
  • Al-Hassan, J.M., Hinek, A., Renno, W.M., Wang, Y., Liu, Y.F., Guan, R., Wen, X.-Y., ... & Pace-Asciak, C. (2020). Potential mechanism of dermal wound treatment with preparations from the skin gel of Arabian gulf catfish: A unique furan fatty acid (F6) and cholesta-3,5-diene (S5) recruit neutrophils and fibroblasts to promote wound healing. Frontiers in Pharmacology, 11, 899. https://doi.org/10.3389/fphar.2020.00899. google scholar
  • Alsini, A., Alshehri, W., Ashyand, R. & Gashgari, R. (2022) Antimicrobial activities and molecular signature of endophytic fungi of wild plant, Saudi Arabia. Advances in Environmental Biology, 16(2), 1-11. https://doi.org/10.22587/aeb.2022.16.2 google scholar
  • Amoateng, P., Quansah, E., Karikari, T., Asase, A., Osei-Safo, D., Kukuia, K., Amponsah, I. & Nyarko, A. (2018). Medicinal plants used in the treatment of mental and neurological disorders in Ghana. Evidence-based Complementary and Alternative Medicine, ID8590381 https://doi.org/10.1155/2018/8590381 google scholar
  • Ancheeva, E., Daletos, G. & Proksch, P. (2020). Bioactive secondary metabolites from endophytic fungi. Current Medicinal Chemistry, 27, 1836-1854. https://doi.org/10.2174/0929867 326666190916144709. google scholar
  • Araujo, L., Moujir, L.M., Rojas, J., Rojas, L., Carmona, J. & Rondon, M. (2013). Chemical composition and biological activity of Conyza bonariensis essential oil collected in Merida, Venezuela. Natural Product Communication, 8(8), 1175-1178. https://doi. org/10.1177/1934578X1300800838. google scholar
  • Aryal, S. (2021). McFarland standards- principle, preparation, uses, limitations. Microbe Notes. URL https://microbenotes.com/ mcfarland-standards/ (accessed 6.16.22). google scholar
  • Bae, M.-S., Park, J.K., Kim, K.-H., Cho, S.-S., Lee, K.-Y. & Shon, Z.-H. (2018). Emission and cytotoxicity of surgical smoke: cholesta-3,5-diene released from pyrolysis of prostate tissue. Atmosphere, 9, 381. https://doi.org/10.3390/atmos9100381 google scholar
  • Begum, I.F., Mohankumar, R., Jeevan, M. & Ramani, K. (2016). GC-MS Analysis of bio-active molecules derived from Paracoccus pantotrophus FMR19 and the antimicrobial activity against bacterial pathogens and MDROs. Indian Journal of Microbiology, 56, 426. https://doi.org/10.1007/s12088-016-0609-1 google scholar
  • Candan, F., Unlu, M., Tepe, B., Daferera, D., Polissiou, M., Sökmen, A. & Akpulat, H.A. (2003). Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae). Journal of Ethnopharmacology, 87, 215-220. https://doi.org/10.1016/ s0378-8741(03)00149-1 google scholar
  • Da Silva, A.C.A., Matias, E.F.F., Rocha, J.E., Araûjo, A.C.J. de, de Freitas, T.S., Campina, F.F., ... & Coutinho, H.D.M. (2021). Gas chromatography coupled to mass spectrometry (GC-MS) characterization and evaluation of antibacterial bioactivities of the essential oils from Piper arboreum Aubl., Piper aduncum L. e Piper gaudichaudianum Kunth. Z Naturforsch. 76, 35-42. https://doi.org/10.1515/znc-2020-0045. google scholar
  • Duhan, P., Bansal, P., & Rani, S. (2020). Isolation, identification and characterization of endophytic bacteria from medicinal plant Tinospora cordifolia. South African Journal of Botany, 134, 43-49. https://doi.org/10.1016/j.sajb.2020.01.047 google scholar
  • El-fayoumy, E.A., Shanab, S.M., Hassan, O.M.A. & Shalaby, E.A. (2021). Enhancement of active ingredients and biological activities of Nostoc linckia biomass cultivated under modified BG-110 medium composition. Biomass Converts and Biorefinery, 1-18. https://doi.org/10.1007/s13399-021-01509-7. google scholar
  • Espinoza, R.V, Penarreta, J., Quijano-Aviles, M., Lucas, A.B., Choez-Guaranda, I. & Santana, P.M. (2020). Antioxidant activity and GC-MS profile of Conyza bonariensis L. leaves extract and fractions. Revista Faculted Nacional de Agronomia Medellm, 73(3), 9305-9313. https://doi.org/10.15446/rfnam.v73n3.81452 google scholar
  • Frey, F.M. & Meyers, R. (2010). Antibacterial activity of traditional medicinal plants used by Haudenosaunee peoples of New York State. BMC Complementary Medicine Therapy, 10, 64. https:// doi.org/10.1186/1472-6882-10-64 google scholar
  • Gautam, V., Kohli, S.K., Arora, S., Bhardwaj, R., Kazi, M., Ahmad, A., Raish, M., Ganaie, M.A. & Ahmad, P. (2018). Antioxidant and antimutagenic activities of different fractions from the leaves of Rhododendron arboreum Sm. and their GC-MS profiling. Molecules, 23, 2239. https://doi.org/10.3390/ molecules23092239 google scholar
  • Gelfond, J., Goros, M., Hernandez, B. & Bokov, A. (2018). A System for an accountable data analysis process in R. Research Journal, 10, 6-21. google scholar
  • Ghwanga, A.A.K. & Chacha, M. (2019). In vitro antimicrobial activity of Conyza bonariensis and Tribulus terrestris growing in Tanzania. Herbal Medicine, 5(1), 4. https://doi. org/10.21767/2472-0151.100042 google scholar
  • Girma, Y. & Jiru, T.M. (2021). Evaluation of antimicrobial activity of Conyza bonariensis leaf extracts against clinically isolated fungi causing superficial infection. Journal of Chemistry, ID6367449. https://doi.org/10.1155/2021/6367449. google scholar
  • Gıdık, B. (2021). Antioxidant, antimicrobial activities and fatty acid compositions of wild Berberis spp. by different techniques combined with chemometrics (PCA and HCA). Molecules, 26, 7448. https://doi.org/10.3390/molecules26247448 google scholar
  • Hackenberger, B.K. (2020). R software: unfriendly but probably the best. Croatian Medical Journal, 61, 66-68. https://doi. org/10.3325/cmj.2020.61.66 google scholar
  • Hsouna, A.B., Trigui, M., Mansour, R.B., Jarraya, R.M., Damak, M. & Jaoua, S. (2011). Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. International Journal of Food Microbiology, 148, 66-72. https://doi.org/10.1016/j.ijfoodmicro.2011.04.028 google scholar
  • Ibrahim, M., Oyebanji, E., Fowora, M., Aiyeolemi, A., Orabuchi, C., Akinnawo, B. & Adekunle, A.A. (2021). Extracts of endophytic fungi from leaves of selected Nigerian ethnomedicinal plants exhibited antioxidant activity. BMC Complementary Medicine Therapy, 21, 98. https://doi. org/10.1186/s12906-021-03269-3 google scholar
  • Jaronski, S. & Mascarin, G. (2016). Mass production of fungal entomopathogens, in: microbial control of insect and mite pests: From theory to practice. http://store.elsevier.com/ product.jsp?locale=en_US&isbn=9780128035276. https://doi. org/10.1016/B978-0-12-803527-6.00009-3 google scholar
  • Kahkönen, M.P. & Heinonen, M. (2003). Antioxidant activity of anthocyanins and their aglycons. Journal of Agriculture and FoodChemistry, 51,628-633. https://doi.org/10.1021/jf025551i google scholar
  • Khaki, P., Sharma, A. & Bhalla, P. (2014) Comparison of two disc diffusion methods with minimum inhibitory concentration for antimicrobial susceptibility testing of Neisseria gonorrhoeae isolates. Annals of Medical Health Science Research, 4, 453456. https://doi.org/10.4103/2141-9248.133477 google scholar
  • Khan, S.U., Ullah, F., Mehmood, S., Fahad, S., Ahmad Rahi, A., Althobaiti, F., Dessoky, E.S., Saud, S., Danish, S. & Datta, R. (2021). Antimicrobial, antioxidant and cytotoxic properties of Chenopodium glaucum L. PLoS One, 16, e0255502. https:// doi.org/10.1371/journal.pone.0255502 google scholar
  • Kianfe, B.Y., Kühlborn, J., Tchuenguem, R.T., Tchegnitegni, B.T., Ponou, B.K., GroB, J., Teponno, R.B., Dzoyem, J.P., Opatz, T. & Tapondjou, L.A. (2020). Antimicrobial secondary metabolites from the medicinal plant Crinum glaucum A. Chev. (Amaryllidaceae). South African Journal of Botany. 133, 161166. https://doi.org/10.1016/j.sajb.2020.07.026 google scholar
  • Kilonzo, M. & Munisi, D. (2021). Antimicrobial activities and phytochemical analysis of Harrisonia abyssinica (Oliv) and Vepris simplicifolia (Verd) extracts used as traditional medicine in Tanzania. Saudi Journal of Biological Science, 28, 74817485. https://doi.org/10.1016/j.sjbs.2021.08.041. google scholar
  • Kumar, K. A., Gousia, S. K. & Latha, J. N. L. (2015). Evaluation of biological activity of secondary metabolites of Neurospora crassa from Machilipatnam Sea Water. Research Journal of Microbiology, 10(8), 377. https://doi.org/10.17311/ jm.2015.377.384 google scholar
  • Leppink, J., O’Sullivan, P. & Winston, K. (2017). The bridge between design and analysis. Perspective Medical Education, 6, 265269. https://doi.org/10.1007/s40037-017-0367-8 google scholar
  • Manganyi, M.C., Regnier, T., Tchatchouang, C.-D.K., Bezuidenhout, C.C. & Ateba, C.N. (2019). Antibacterial activity of endophytic fungi isolated from Sceletium tortuosum L. (Kougoed). Annal Microbiology, 69, 659-663. https://doi.org/10.1007/s13213-019-1444-5 google scholar
  • Manyahi, J., Matee, M.I., Majigo, M., Moyo, S., Mshana, S.E. & Lyamuya, E.F. (2014). Predominance of multi-drug resistant bacterial pathogens causing surgical site infections in Muhimbili national hospital, Tanzania. BMC Research Notes, 7, 500. https://doi.org/10.1186/1756-0500-7-500 google scholar
  • Mazumder, K., Nabila, A., Aktar, A. & Farahnaky, A. (2020) Bioactive variability and in vitro and in vivo antioxidant activity of unprocessed and processed flour of nine cultivars of Australian lupin Species: A Comprehensive Substantiation. Antioxidants, 9. https://doi.org/10.3390/antiox9040282. google scholar
  • Mohamed, S.Y., Hussein, M. & Dawy. E.E.l., 2016. Antimicrobial and L-asparaginase activities ofendophytic fungi isolated from Datura innoxia and Hyoscyamus muticus medicinal plants. European Journal of Biological Research, 6, 135-144. https:// doi.org/10.5281/zenodo.56056 google scholar
  • Mou, Y., Meng, J., Fu, X., Wang, X., Tian, J., Wang, M., Peng, Y. & Zhou, L. (2013). Antimicrobial and antioxidant activities and effect of 1-Hexadecene addition on palmarumycin C2 and C3 yields in liquid culture of endophytic fungus Berkleasmium sp. Dzf12. Molecules, 18, 15587-15599. https://doi.org/10.3390/ molecules181215587. google scholar
  • Mpenda, F. & Mkangara, M. (2022). Antimicrobial activity of n-hexane and ethyl acetate extracts from Candida tropicalis and Phyllosticta capitalensis fungal endophytes. Baghdad Journal of Biochemistry and BiologicalScience, 3(2), 109-121. https:// doi.org/10.47419/bjbabs.v3i02.118. google scholar
  • Mpinda, C., Meyer, D. & Lyantagaye, S. (2018). In vitro antimicrobial activity of extracts of some plant species used in the management of HIV/AIDS in Tanzania. Tanzania Journal of Science, 44, 179-190. https://doi.org/10.4314/tjs.v44i1 google scholar
  • Mwanga, Z., Mvungi, E. & Tibuhwa, D. (2019). Antimicrobial activities of endophytic fungi secondary metabolites from Moringa oleifera (Lam). Tanzania Journal of Science, 45, 463-476. google scholar
  • Nxumalo, C.I., Ngidi, L.S., Shandu, J.S.E. & Maliehe, T.S. (2020). Isolation of endophytic bacteria from the leaves of Anredera cordifolia CIX1 for metabolites and their biological activities. BMC Complementary Medicine Therapy, 20, 300. https://doi. org/10.1186/s12906-020-03095-z. google scholar
  • Patil, R.H., Patil, M.P. & Maheshwari, V.L. (2016). Bioactive secondary metabolites from endophytic fungi: A review of biotechnological production and their potential applications, in: Atta-ur-Rahman (Ed.). Studies of Natural Product of Chemistry. 189-205. https://doi.org/10.1016/B978-0-444-63601-0.00005-3 google scholar
  • Paul, J.C. (2012) Molecular and morphological characterization of endophytic Heterobasidion araucariae from roots of Capsicum annuum L. in Korea. Mycobiology, 40(2), 85-90. https://doi. org/10.5941/MYCO.2012.40.2.85 google scholar
  • Rahman, M.M., Ahmad, S.H., Mohamed, M.T.M. & Ab Rahman, M.Z. (2014). Antimicrobial compounds from leaf extracts of Jatropha curcas, Psidium guajava, and Andrographis paniculata. Scientific World Journal, 2014, 635240. https:// doi.org/10.1155/2014/635240 google scholar
  • Santos, I.P dos, Silva, L.C.N. Da Silva, M.V. da, Araûjo, J.M. de, Cavalcanti, M. da S. & Lima, V.L.M. (2015). Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae). Frontier Microbiology 6. google scholar
  • Selvi, K. (2014). Isolation and screening of endophytic fungi from medicinal plants of Virudhunagar district for antimicrobial activity. International Journal of Science and Nature, 5, 147-155. google scholar
  • Tonisi, S., Okaiyeto, K., Hoppe, H., Mabinya, L.V., Nwodo, U.U.& Okoh, A.I. (2020). Chemical constituents, antioxidant and cytotoxicity properties of Leonotisleonurus used in the folklore management of neurological disorders in the Eastern Cape, South Africa. Biotechnology, 10, 141. https://doi.org/10.1007/ s13205-020-2126-5 google scholar
  • Umesha, S., Manukumar, H.M. & Raghava, S. (2016). A rapid method for isolation of genomic DNA from food-borne fungal pathogens. Biotechnology, 6, 123. https://doi.org/10.1007/ s13205-016-0436-4 google scholar
  • Wu, H., Yan, Z., Deng, Y., Wu, Z., Xu, X., Li, X., Zhou, X. & Luo, H. (2020). Endophytic fungi from the root tubers of medicinal plant Stephania dielsiana and their antimicrobial activity. ActaEcologicaSinica, 40, 383-387. https://doi.0rg/lO.lOl6/j. chnaes.2020.02.008 google scholar
  • Xiong, L., Peng, C., Zhou, Q.-M., Wan, F., Xie, X.-F., Guo, L., Li, X.-H., He, C.-J. & Dai, O. (2Ol3). Chemical composition and antibacterial activity of essential oils from different parts of Leonurus japonicus Houtt. Molecules. l8, 963-973. https:// doi.org/lO.339O/moleculesl8OlO963 google scholar
  • Yang, D., Michel, L., Chaumont, J.P. & Millet-Clerc, J. (l999) Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia. l48, 79-82. https://doi.org/lO.lO23/a:lOO7l789244O8 google scholar
  • Yoon, B.K., Jackman, J.A., Valle-Gonzâlez, E.R. & Cho, N.-J. (2018) Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications. International Journal of Molecular Science, l9, lll4. https:// doi.org/l0.3390/ijmsl904lll4 google scholar
  • Zhao, J.H., Zhang, Y.L., Wang, L.W., Wang, J.Y. & Zhang, C.L. (20l2). Bioactive secondary metabolites from Nigrospora sp. LLGLM003, an endophytic fungus of the medicinal plant Moringa oleifera Lam. World Journal Microbiology and Biotechnology, 28, 2l07-2ll2. https://doi.org/l0.l007/sll274-0l2-l0l5-4. google scholar
Year 2023, Volume: 7 Issue: 2, 69 - 82, 07.09.2023
https://doi.org/10.26650/tjbc.1277130

Abstract

References

  • Amiri, N. & Tibuhwa, D.D. (2020). Antimicrobial activities of endophytic fungal crude extracts isolated from cashew tree (Anacardium occidentale). Tanzania Journal of Science, 47, 1102-1113. google scholar
  • Abdollahi, A., Fasihi-ramandi, M., Kouhpayeh, S., Najafipour, S., Meshkibaf, M., Naghdi, M. & Ahmadi, E. (2012). Antimicrobial effect of 15 medicinal plant species and their dependency on climatic conditions of growth in different geographical and ecological areas of Fars province. Zahedan Journal of Research in Medical Sciences, 14(5), e93406. google scholar
  • Abu-Khadra, A.S., Farag, R.S. & Abdel-Hady, A.E.D.M. (2016). Synthesis, characterization and antimicrobial activity of Schiff base (E)-N-(4-(2-Hydroxybenzylideneamino) Phenylsulfonyl) acetamide metal complexes. American Journal of Analytical Chem istry 7, 233-245. https://doi.org/10.4236/ajac.2016.73020. google scholar
  • Al-Abd, N.M., Nor, Z.M., Mansor, M., Azhar, F., Hasan, M.S. & Kassim, M. (2015) Antioxidant, antibacterial activity, and phytochemical characterization of Melaleuca cajuputi extract. BMC Complementary Medicine, 15. ID385. https://doi. org/10.1186/s12906-015-0914-y google scholar
  • Albadawi, D.A., Mothana, R.A., Khaled, J.M., Ashour, A.E., Kumar, A., Ahmad, S.F., Al-Said, M.S., Al-Rehaily, A.J. & Almusayeib, N.M. (2017). Antimicrobial, anticancer, and antioxidant compounds from Premna resinosa growing in Saudi Arabia. Pharmaceutical Biology, 55, 1759-1766. https://doi.org/10.1 080/13880209.2017.1322617 google scholar
  • Al-Hassan, J.M., Hinek, A., Renno, W.M., Wang, Y., Liu, Y.F., Guan, R., Wen, X.-Y., ... & Pace-Asciak, C. (2020). Potential mechanism of dermal wound treatment with preparations from the skin gel of Arabian gulf catfish: A unique furan fatty acid (F6) and cholesta-3,5-diene (S5) recruit neutrophils and fibroblasts to promote wound healing. Frontiers in Pharmacology, 11, 899. https://doi.org/10.3389/fphar.2020.00899. google scholar
  • Alsini, A., Alshehri, W., Ashyand, R. & Gashgari, R. (2022) Antimicrobial activities and molecular signature of endophytic fungi of wild plant, Saudi Arabia. Advances in Environmental Biology, 16(2), 1-11. https://doi.org/10.22587/aeb.2022.16.2 google scholar
  • Amoateng, P., Quansah, E., Karikari, T., Asase, A., Osei-Safo, D., Kukuia, K., Amponsah, I. & Nyarko, A. (2018). Medicinal plants used in the treatment of mental and neurological disorders in Ghana. Evidence-based Complementary and Alternative Medicine, ID8590381 https://doi.org/10.1155/2018/8590381 google scholar
  • Ancheeva, E., Daletos, G. & Proksch, P. (2020). Bioactive secondary metabolites from endophytic fungi. Current Medicinal Chemistry, 27, 1836-1854. https://doi.org/10.2174/0929867 326666190916144709. google scholar
  • Araujo, L., Moujir, L.M., Rojas, J., Rojas, L., Carmona, J. & Rondon, M. (2013). Chemical composition and biological activity of Conyza bonariensis essential oil collected in Merida, Venezuela. Natural Product Communication, 8(8), 1175-1178. https://doi. org/10.1177/1934578X1300800838. google scholar
  • Aryal, S. (2021). McFarland standards- principle, preparation, uses, limitations. Microbe Notes. URL https://microbenotes.com/ mcfarland-standards/ (accessed 6.16.22). google scholar
  • Bae, M.-S., Park, J.K., Kim, K.-H., Cho, S.-S., Lee, K.-Y. & Shon, Z.-H. (2018). Emission and cytotoxicity of surgical smoke: cholesta-3,5-diene released from pyrolysis of prostate tissue. Atmosphere, 9, 381. https://doi.org/10.3390/atmos9100381 google scholar
  • Begum, I.F., Mohankumar, R., Jeevan, M. & Ramani, K. (2016). GC-MS Analysis of bio-active molecules derived from Paracoccus pantotrophus FMR19 and the antimicrobial activity against bacterial pathogens and MDROs. Indian Journal of Microbiology, 56, 426. https://doi.org/10.1007/s12088-016-0609-1 google scholar
  • Candan, F., Unlu, M., Tepe, B., Daferera, D., Polissiou, M., Sökmen, A. & Akpulat, H.A. (2003). Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan. (Asteraceae). Journal of Ethnopharmacology, 87, 215-220. https://doi.org/10.1016/ s0378-8741(03)00149-1 google scholar
  • Da Silva, A.C.A., Matias, E.F.F., Rocha, J.E., Araûjo, A.C.J. de, de Freitas, T.S., Campina, F.F., ... & Coutinho, H.D.M. (2021). Gas chromatography coupled to mass spectrometry (GC-MS) characterization and evaluation of antibacterial bioactivities of the essential oils from Piper arboreum Aubl., Piper aduncum L. e Piper gaudichaudianum Kunth. Z Naturforsch. 76, 35-42. https://doi.org/10.1515/znc-2020-0045. google scholar
  • Duhan, P., Bansal, P., & Rani, S. (2020). Isolation, identification and characterization of endophytic bacteria from medicinal plant Tinospora cordifolia. South African Journal of Botany, 134, 43-49. https://doi.org/10.1016/j.sajb.2020.01.047 google scholar
  • El-fayoumy, E.A., Shanab, S.M., Hassan, O.M.A. & Shalaby, E.A. (2021). Enhancement of active ingredients and biological activities of Nostoc linckia biomass cultivated under modified BG-110 medium composition. Biomass Converts and Biorefinery, 1-18. https://doi.org/10.1007/s13399-021-01509-7. google scholar
  • Espinoza, R.V, Penarreta, J., Quijano-Aviles, M., Lucas, A.B., Choez-Guaranda, I. & Santana, P.M. (2020). Antioxidant activity and GC-MS profile of Conyza bonariensis L. leaves extract and fractions. Revista Faculted Nacional de Agronomia Medellm, 73(3), 9305-9313. https://doi.org/10.15446/rfnam.v73n3.81452 google scholar
  • Frey, F.M. & Meyers, R. (2010). Antibacterial activity of traditional medicinal plants used by Haudenosaunee peoples of New York State. BMC Complementary Medicine Therapy, 10, 64. https:// doi.org/10.1186/1472-6882-10-64 google scholar
  • Gautam, V., Kohli, S.K., Arora, S., Bhardwaj, R., Kazi, M., Ahmad, A., Raish, M., Ganaie, M.A. & Ahmad, P. (2018). Antioxidant and antimutagenic activities of different fractions from the leaves of Rhododendron arboreum Sm. and their GC-MS profiling. Molecules, 23, 2239. https://doi.org/10.3390/ molecules23092239 google scholar
  • Gelfond, J., Goros, M., Hernandez, B. & Bokov, A. (2018). A System for an accountable data analysis process in R. Research Journal, 10, 6-21. google scholar
  • Ghwanga, A.A.K. & Chacha, M. (2019). In vitro antimicrobial activity of Conyza bonariensis and Tribulus terrestris growing in Tanzania. Herbal Medicine, 5(1), 4. https://doi. org/10.21767/2472-0151.100042 google scholar
  • Girma, Y. & Jiru, T.M. (2021). Evaluation of antimicrobial activity of Conyza bonariensis leaf extracts against clinically isolated fungi causing superficial infection. Journal of Chemistry, ID6367449. https://doi.org/10.1155/2021/6367449. google scholar
  • Gıdık, B. (2021). Antioxidant, antimicrobial activities and fatty acid compositions of wild Berberis spp. by different techniques combined with chemometrics (PCA and HCA). Molecules, 26, 7448. https://doi.org/10.3390/molecules26247448 google scholar
  • Hackenberger, B.K. (2020). R software: unfriendly but probably the best. Croatian Medical Journal, 61, 66-68. https://doi. org/10.3325/cmj.2020.61.66 google scholar
  • Hsouna, A.B., Trigui, M., Mansour, R.B., Jarraya, R.M., Damak, M. & Jaoua, S. (2011). Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. International Journal of Food Microbiology, 148, 66-72. https://doi.org/10.1016/j.ijfoodmicro.2011.04.028 google scholar
  • Ibrahim, M., Oyebanji, E., Fowora, M., Aiyeolemi, A., Orabuchi, C., Akinnawo, B. & Adekunle, A.A. (2021). Extracts of endophytic fungi from leaves of selected Nigerian ethnomedicinal plants exhibited antioxidant activity. BMC Complementary Medicine Therapy, 21, 98. https://doi. org/10.1186/s12906-021-03269-3 google scholar
  • Jaronski, S. & Mascarin, G. (2016). Mass production of fungal entomopathogens, in: microbial control of insect and mite pests: From theory to practice. http://store.elsevier.com/ product.jsp?locale=en_US&isbn=9780128035276. https://doi. org/10.1016/B978-0-12-803527-6.00009-3 google scholar
  • Kahkönen, M.P. & Heinonen, M. (2003). Antioxidant activity of anthocyanins and their aglycons. Journal of Agriculture and FoodChemistry, 51,628-633. https://doi.org/10.1021/jf025551i google scholar
  • Khaki, P., Sharma, A. & Bhalla, P. (2014) Comparison of two disc diffusion methods with minimum inhibitory concentration for antimicrobial susceptibility testing of Neisseria gonorrhoeae isolates. Annals of Medical Health Science Research, 4, 453456. https://doi.org/10.4103/2141-9248.133477 google scholar
  • Khan, S.U., Ullah, F., Mehmood, S., Fahad, S., Ahmad Rahi, A., Althobaiti, F., Dessoky, E.S., Saud, S., Danish, S. & Datta, R. (2021). Antimicrobial, antioxidant and cytotoxic properties of Chenopodium glaucum L. PLoS One, 16, e0255502. https:// doi.org/10.1371/journal.pone.0255502 google scholar
  • Kianfe, B.Y., Kühlborn, J., Tchuenguem, R.T., Tchegnitegni, B.T., Ponou, B.K., GroB, J., Teponno, R.B., Dzoyem, J.P., Opatz, T. & Tapondjou, L.A. (2020). Antimicrobial secondary metabolites from the medicinal plant Crinum glaucum A. Chev. (Amaryllidaceae). South African Journal of Botany. 133, 161166. https://doi.org/10.1016/j.sajb.2020.07.026 google scholar
  • Kilonzo, M. & Munisi, D. (2021). Antimicrobial activities and phytochemical analysis of Harrisonia abyssinica (Oliv) and Vepris simplicifolia (Verd) extracts used as traditional medicine in Tanzania. Saudi Journal of Biological Science, 28, 74817485. https://doi.org/10.1016/j.sjbs.2021.08.041. google scholar
  • Kumar, K. A., Gousia, S. K. & Latha, J. N. L. (2015). Evaluation of biological activity of secondary metabolites of Neurospora crassa from Machilipatnam Sea Water. Research Journal of Microbiology, 10(8), 377. https://doi.org/10.17311/ jm.2015.377.384 google scholar
  • Leppink, J., O’Sullivan, P. & Winston, K. (2017). The bridge between design and analysis. Perspective Medical Education, 6, 265269. https://doi.org/10.1007/s40037-017-0367-8 google scholar
  • Manganyi, M.C., Regnier, T., Tchatchouang, C.-D.K., Bezuidenhout, C.C. & Ateba, C.N. (2019). Antibacterial activity of endophytic fungi isolated from Sceletium tortuosum L. (Kougoed). Annal Microbiology, 69, 659-663. https://doi.org/10.1007/s13213-019-1444-5 google scholar
  • Manyahi, J., Matee, M.I., Majigo, M., Moyo, S., Mshana, S.E. & Lyamuya, E.F. (2014). Predominance of multi-drug resistant bacterial pathogens causing surgical site infections in Muhimbili national hospital, Tanzania. BMC Research Notes, 7, 500. https://doi.org/10.1186/1756-0500-7-500 google scholar
  • Mazumder, K., Nabila, A., Aktar, A. & Farahnaky, A. (2020) Bioactive variability and in vitro and in vivo antioxidant activity of unprocessed and processed flour of nine cultivars of Australian lupin Species: A Comprehensive Substantiation. Antioxidants, 9. https://doi.org/10.3390/antiox9040282. google scholar
  • Mohamed, S.Y., Hussein, M. & Dawy. E.E.l., 2016. Antimicrobial and L-asparaginase activities ofendophytic fungi isolated from Datura innoxia and Hyoscyamus muticus medicinal plants. European Journal of Biological Research, 6, 135-144. https:// doi.org/10.5281/zenodo.56056 google scholar
  • Mou, Y., Meng, J., Fu, X., Wang, X., Tian, J., Wang, M., Peng, Y. & Zhou, L. (2013). Antimicrobial and antioxidant activities and effect of 1-Hexadecene addition on palmarumycin C2 and C3 yields in liquid culture of endophytic fungus Berkleasmium sp. Dzf12. Molecules, 18, 15587-15599. https://doi.org/10.3390/ molecules181215587. google scholar
  • Mpenda, F. & Mkangara, M. (2022). Antimicrobial activity of n-hexane and ethyl acetate extracts from Candida tropicalis and Phyllosticta capitalensis fungal endophytes. Baghdad Journal of Biochemistry and BiologicalScience, 3(2), 109-121. https:// doi.org/10.47419/bjbabs.v3i02.118. google scholar
  • Mpinda, C., Meyer, D. & Lyantagaye, S. (2018). In vitro antimicrobial activity of extracts of some plant species used in the management of HIV/AIDS in Tanzania. Tanzania Journal of Science, 44, 179-190. https://doi.org/10.4314/tjs.v44i1 google scholar
  • Mwanga, Z., Mvungi, E. & Tibuhwa, D. (2019). Antimicrobial activities of endophytic fungi secondary metabolites from Moringa oleifera (Lam). Tanzania Journal of Science, 45, 463-476. google scholar
  • Nxumalo, C.I., Ngidi, L.S., Shandu, J.S.E. & Maliehe, T.S. (2020). Isolation of endophytic bacteria from the leaves of Anredera cordifolia CIX1 for metabolites and their biological activities. BMC Complementary Medicine Therapy, 20, 300. https://doi. org/10.1186/s12906-020-03095-z. google scholar
  • Patil, R.H., Patil, M.P. & Maheshwari, V.L. (2016). Bioactive secondary metabolites from endophytic fungi: A review of biotechnological production and their potential applications, in: Atta-ur-Rahman (Ed.). Studies of Natural Product of Chemistry. 189-205. https://doi.org/10.1016/B978-0-444-63601-0.00005-3 google scholar
  • Paul, J.C. (2012) Molecular and morphological characterization of endophytic Heterobasidion araucariae from roots of Capsicum annuum L. in Korea. Mycobiology, 40(2), 85-90. https://doi. org/10.5941/MYCO.2012.40.2.85 google scholar
  • Rahman, M.M., Ahmad, S.H., Mohamed, M.T.M. & Ab Rahman, M.Z. (2014). Antimicrobial compounds from leaf extracts of Jatropha curcas, Psidium guajava, and Andrographis paniculata. Scientific World Journal, 2014, 635240. https:// doi.org/10.1155/2014/635240 google scholar
  • Santos, I.P dos, Silva, L.C.N. Da Silva, M.V. da, Araûjo, J.M. de, Cavalcanti, M. da S. & Lima, V.L.M. (2015). Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae). Frontier Microbiology 6. google scholar
  • Selvi, K. (2014). Isolation and screening of endophytic fungi from medicinal plants of Virudhunagar district for antimicrobial activity. International Journal of Science and Nature, 5, 147-155. google scholar
  • Tonisi, S., Okaiyeto, K., Hoppe, H., Mabinya, L.V., Nwodo, U.U.& Okoh, A.I. (2020). Chemical constituents, antioxidant and cytotoxicity properties of Leonotisleonurus used in the folklore management of neurological disorders in the Eastern Cape, South Africa. Biotechnology, 10, 141. https://doi.org/10.1007/ s13205-020-2126-5 google scholar
  • Umesha, S., Manukumar, H.M. & Raghava, S. (2016). A rapid method for isolation of genomic DNA from food-borne fungal pathogens. Biotechnology, 6, 123. https://doi.org/10.1007/ s13205-016-0436-4 google scholar
  • Wu, H., Yan, Z., Deng, Y., Wu, Z., Xu, X., Li, X., Zhou, X. & Luo, H. (2020). Endophytic fungi from the root tubers of medicinal plant Stephania dielsiana and their antimicrobial activity. ActaEcologicaSinica, 40, 383-387. https://doi.0rg/lO.lOl6/j. chnaes.2020.02.008 google scholar
  • Xiong, L., Peng, C., Zhou, Q.-M., Wan, F., Xie, X.-F., Guo, L., Li, X.-H., He, C.-J. & Dai, O. (2Ol3). Chemical composition and antibacterial activity of essential oils from different parts of Leonurus japonicus Houtt. Molecules. l8, 963-973. https:// doi.org/lO.339O/moleculesl8OlO963 google scholar
  • Yang, D., Michel, L., Chaumont, J.P. & Millet-Clerc, J. (l999) Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia. l48, 79-82. https://doi.org/lO.lO23/a:lOO7l789244O8 google scholar
  • Yoon, B.K., Jackman, J.A., Valle-Gonzâlez, E.R. & Cho, N.-J. (2018) Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications. International Journal of Molecular Science, l9, lll4. https:// doi.org/l0.3390/ijmsl904lll4 google scholar
  • Zhao, J.H., Zhang, Y.L., Wang, L.W., Wang, J.Y. & Zhang, C.L. (20l2). Bioactive secondary metabolites from Nigrospora sp. LLGLM003, an endophytic fungus of the medicinal plant Moringa oleifera Lam. World Journal Microbiology and Biotechnology, 28, 2l07-2ll2. https://doi.org/l0.l007/sll274-0l2-l0l5-4. google scholar
There are 56 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Articles
Authors

Fulgence Ntangere Mpenda 0000-0001-5287-5501

Cyprian Beda Mpinda This is me 0000-0002-1565-4408

Simeon Phares Nsindagi This is me

Publication Date September 7, 2023
Submission Date April 4, 2023
Acceptance Date July 29, 2023
Published in Issue Year 2023 Volume: 7 Issue: 2

Cite

APA Mpenda, F. N., Mpinda, C. B., & Nsindagi, S. P. (2023). Antimicrobial Potential and Molecular Characterisation of Endophytic Fungi Isolated from Conyza bonariensis from Tanzania. Turkish Journal of Bioscience and Collections, 7(2), 69-82. https://doi.org/10.26650/tjbc.1277130
AMA Mpenda FN, Mpinda CB, Nsindagi SP. Antimicrobial Potential and Molecular Characterisation of Endophytic Fungi Isolated from Conyza bonariensis from Tanzania. tjbc. September 2023;7(2):69-82. doi:10.26650/tjbc.1277130
Chicago Mpenda, Fulgence Ntangere, Cyprian Beda Mpinda, and Simeon Phares Nsindagi. “Antimicrobial Potential and Molecular Characterisation of Endophytic Fungi Isolated from Conyza Bonariensis from Tanzania”. Turkish Journal of Bioscience and Collections 7, no. 2 (September 2023): 69-82. https://doi.org/10.26650/tjbc.1277130.
EndNote Mpenda FN, Mpinda CB, Nsindagi SP (September 1, 2023) Antimicrobial Potential and Molecular Characterisation of Endophytic Fungi Isolated from Conyza bonariensis from Tanzania. Turkish Journal of Bioscience and Collections 7 2 69–82.
IEEE F. N. Mpenda, C. B. Mpinda, and S. P. Nsindagi, “Antimicrobial Potential and Molecular Characterisation of Endophytic Fungi Isolated from Conyza bonariensis from Tanzania”, tjbc, vol. 7, no. 2, pp. 69–82, 2023, doi: 10.26650/tjbc.1277130.
ISNAD Mpenda, Fulgence Ntangere et al. “Antimicrobial Potential and Molecular Characterisation of Endophytic Fungi Isolated from Conyza Bonariensis from Tanzania”. Turkish Journal of Bioscience and Collections 7/2 (September 2023), 69-82. https://doi.org/10.26650/tjbc.1277130.
JAMA Mpenda FN, Mpinda CB, Nsindagi SP. Antimicrobial Potential and Molecular Characterisation of Endophytic Fungi Isolated from Conyza bonariensis from Tanzania. tjbc. 2023;7:69–82.
MLA Mpenda, Fulgence Ntangere et al. “Antimicrobial Potential and Molecular Characterisation of Endophytic Fungi Isolated from Conyza Bonariensis from Tanzania”. Turkish Journal of Bioscience and Collections, vol. 7, no. 2, 2023, pp. 69-82, doi:10.26650/tjbc.1277130.
Vancouver Mpenda FN, Mpinda CB, Nsindagi SP. Antimicrobial Potential and Molecular Characterisation of Endophytic Fungi Isolated from Conyza bonariensis from Tanzania. tjbc. 2023;7(2):69-82.