Research Article
BibTex RIS Cite

Corrosion Rate-Based Adjustment of Plastic Hinge Parameters of Corroded RC Elements

Year 2024, , 103 - 123, 01.03.2024
https://doi.org/10.18400/tjce.1214088

Abstract

In line with the trend towards predictive seismic codes adopting the performance-based design method, this paper presents an integrated protocol to determine the degraded hysteresis parameters of corroded RC hinges based on relationships developed for this purpose together with a calibration procedure using the random-mutation hill-climbing algorithm. The adjustment procedure is integrated into the material library of the OpenSees software and used to perform nonlinear dynamic analyses to investigate the seismic performance of a typical bridge with affected piers at different corrosion levels. In practice the proposed procedure permits to assess the seismic performance of existing or new structures for a given corrosion rate distribution.

Supporting Institution

Ministry of higher education Algeria

Project Number

Grant CNEPRU J0400420140001

Thanks

The financial support of the Ministry of higher education MESRS in Algeria (Grant CNEPRU J0400420140001) for conducting this study is greatly acknowledged.

References

  • Li W., Xu C., Ho S.C., Wang B., Song G., Monitoring concrete deterioration due to reinforcement corrosion by integrating acoustic emission and FBG strain measurements. Sensors. 2017;17(3):657. https://doi.org/10.3390/s17030657
  • Bertolini L., Elsener B., Pedeferri P., Redaelli E., Polder R., Corrosion of steel in concrete: Prevention, diagnosis, repair (2nd ed.); Weinheim, Germany: Wiley VCH; 2013.
  • Andrade C., Propagation of reinforcement corrosion: principles, testing and modelling, Mater Struct. 2019; 52:2, https://doi.org/10.1617/s11527-018-1301-1
  • François R., Laurens S., Deby F., Steel corrosion in reinforced concrete, Editor(s): Raoul François, Stéphane Laurens, Fabrice Deby, Corrosion and its consequences for reinforced concrete structures, Elsevier, 2018; 1-41, ISBN 9781785482342, https://doi.org/10.1016/B978-1-78548-234-2.50001-9
  • Bertolini L., Steel corrosion and service life of reinforced concrete structures, Struct Infrastruct Eng. 4:2, 123-137, http://dx.10.1080/15732470601155490
  • Şengül, Ö. (2011). Probabilistic Design for the Durability of Reinforced Concrete Structural Elements Exposed to Chloride Containing Environments . Teknik Dergi , 22 (110) , 1461-1475, https://dergipark.org.tr/en/pub/tekderg/issue/12749/155174
  • Andisheh K., Scott A., Palermo A., Seismic behavior of corroded RC bridges: Review and research gaps, Int J Corros. 2016, Article ID 3075184, http://dx.doi.org/10.1155/2016/3075184.
  • Inci P., Goksu C., Ilki A., Kumbasar N., Effects of reinforcement corrosion on the performance of RC frame buildings subjected to seismic actions. Journal of Performance of Constructed Facilities, 27(6), 683–696. doi:10.1061/(asce) cf.1943-5509.0000378
  • Nataraj S., Hogan L., Scott A., Ingham J., Simplified Mechanics-Based Approach for the Seismic Assessment of Corroded Reinforced Concrete Structures J Struct Eng., 2022, 148(3), 04021296, doi10.1061/(ASCE)ST.1943-541X.0003265.
  • Opabola E. A., Residual seismic capacity of beam-column components with corroded reinforcement, Constr. Build. Mat. 332 (2022) 127269, https://doi.org/10.1016/j.conbuildmat.2022.127269
  • Bourahla N., Tafraout S., Attar A., Nonlinear dynamic response of aging degraded reinforced concrete structures under earthquake loading, Proceedings of the 14th European Conference on Earthquake Engineering, Ohrid Macedonia 2010, paper 537.
  • Akiyama M., Frangopol D.M., Long-term seismic performance of RC structures in an aggressive environment: emphasis on bridge piers, Struct Infrastruct Eng. 2014;10:7, 865-879, doi: 10.1080/15732479.2012.7612
  • Choe D.E., Gardoni P., Rosowsky D., Haukaas T., Seismic fragility estimates for reinforced concrete bridges subject to corrosion. Struct. Saf., 2009;31(4), 275-283. doi:10.1016/j.strusafe.2008.10.001
  • Hu S., Wang Z., Guo Y., Xiao G., Life-cycle seismic fragility assessment of existing RC bridges subject to chloride-induced corrosion in marine environment. Adv Civ Eng. 2021, Article ID 9640521, 18 pages, https://doi.org/10.1155/2021/964052
  • Domaneschi M., De Gaetano A., Casas J.R., Cimellaro G.P., Deteriorated seismic capacity assessment of reinforced concrete bridge piers in corrosive environment. Struct Concr. 2020;1–16. https://doi.org/10.1002/suco.202000106
  • Naderpour H., Ghasemi-Meydansar F., Haji M., Experimental study on the behavior of RC beams with artificially corroded bars, Structures, Volume 43, 2022, pp1932-1944, https://doi.org/10.1016/j.istruc.2022.07.005.
  • Goksu C. and Ilki A., Seismic behavior of reinforced concrete columns with corroded deformed reinforcing Bars, ACI Structural Journal 113 (5) 2016: 1053-1064, DOI:10.14359/51689030
  • Meda A., Mostosi S., Rinaldi Z., Riva P., Experimental evaluation of the corrosion influence on the cyclic behaviour of RC columns. Eng Struct, 2014; 76: 112 − 123. doi:10.1016/j.engstruct.2014.06.043
  • Kim T.H., Seismic performance assessment of deteriorated two-span reinforced concrete bridges. Int J Concr Struct Mater 2022; 16:4 https://doi.org/10.1186/s40069-022-00498-
  • Scattarreggia N., Qiao T., Malomo D., Earthquake response modeling of corroded reinforced concrete hollow-section piers via simplified fiber-based FE analysis. Sustain 2021; 13, 9342. https://doi.org/10.3390/su13169342
  • Ibarra L.F., Medina R.A., Krawinkler H., Hysteretic models that incorporate strength and stiffness deterioration, Earthq Eng Struct Dyn, 2005; 34(12), 1489-1511. https://doi.org/10.1002/eqe.495
  • McKenna F., OpenSees: A Framework for earthquake engineering simulation, Comput Sci Eng. 2011; 13(4), 58-66, doi:10.1109/MCSE.2011.66.
  • Haselton C.B., Liel A.B., Lange S.T., Deierlein G.G., Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings, PEER Report 2007/03, PEER Center, University of California, Berkeley, 2008.
  • Panagiotakos T.B., Fardis M.N., Deformations of reinforced concrete at yielding and ultimate, ACI Struct J, 2001; 98(2), 135-147.
  • Özyurt N., Söylev T. A., Özturan T., Pehlivan A.O., Niş A., Corrosion and chloride diffusivity of reinforced concrete cracked under sustained flexure. Teknik Dergi 31 2020: 10315-10337
  • Bezuidenhout S.R., Van Zijl G.P.A.G., Corrosion propagation in cracked reinforced concrete, toward determining residual service life. Struct Concr. 2019;1–11. https://doi.org/10.1002/suco.201800275
  • Bossio A., Lignola G.P., Fabbrocino F., Monetta T., Prota A., Bellucci F., Manfredi G., Nondestructive assessment of corrosion of reinforcing bars through surface concrete cracks, struct concr, 2017;18(1), 104-117. https://doi.org/10.1002/suco.201600034.
  • Khan I., François R., Castel A., Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams. Cem. Concr. Res. 2014, 56, 84–96. https://doi.org/10.1016/j.cemconres.2013.11.006
  • Nikoo M., Sadowski Ł., Nikoo M., Prediction of the corrosion current density in reinforced concrete using a self-organizing feature map. Coatings 2017; 7, 160. https://doi.org/10.3390/coatings7100160
  • Du Y.G., Clark L.A., Chan A.H.C., Effect of corrosion on ductility of reinforcing bars. Mag Concr Res. 2005; 57(7), 407-419. doi:10.1680/macr.2005.57.7.407
  • González J.A., Andrade C., Alonso C., Feliu S., Comparison of rates of general corrosion and maximum pitting penetration on concrete embedded steel reinforcement. Cem. Concr. Res.1995; 25(2), 257–264. doi:10.1016/0008-8846(95)00006-2
  • Du Y.G., Clark L.A., Chan A.H.C., Residual capacity of corroded reinforcing bars, 2005, Mag Concr Res. 57(3), 135-147. doi:10.1680/macr.2005.57.3.135
  • Tapan M., Aboutaha R.S., Effect of steel corrosion and loss of concrete cover on strength of deteriorated RC columns, Constr. Build. Mat. 25 (2011) 2596–2603, doi:10.1016/j.conbuildmat.2010.12.003
  • Apostolopoulos C., Koulouris K.F., Apostolopoulos A.C., Correlation of surface cracks of concrete due to corrosion and bond strength (between steel bar and concrete), Advances in Civil Engineering, vol. 2019, Article ID 3438743. https://doi.org/10.1155/2019/3438743
  • Coronelli D., Gambarova P., Structural assessment of corroded reinforced concrete beams: Modeling guidelines. J Struct Eng. 2004;130(8), 1214–1224. doi:10.1061/(asce)0733-9445(2004)130:8(1214).
  • Poursaee A., Corrosion of steel in concrete structures, 1st Edition, Woodhead Publishing, ISBN - 13:9781782423812.
  • Yang S.Y., Song X.B., Jia H.X., Chen X., Liu X.L., Experimental research on hysteretic behaviors of corroded reinforced concrete columns with different maximum amounts of corrosion of rebar. Construct Build Mater, 2016; 121, 319–327. doi:10.1016/j.conbuildmat.2016.06.002
  • Taborda D.M.G., Zdravkovic L., Application of a Hill-Climbing technique to the formulation of a new cyclic nonlinear elastic constitutive model. Comput Geotech. 2012; 43, 80–91. doi:10.1016/j.compgeo.2012.02.001
  • Ibarra L., Krawinkler H., Global collapse of frame structures under seismic excitations. Blume Center TR 152, Stanford University; 2003.
  • Khaled A., Tremblay R., Massicotte B., Combination rule for the prediction of the seismic demand on columns of regular bridges under bidirectional earthquake components. Can J Civ Eng. 2011 38(6), 698–709. doi:10.1139/l11-031
  • Canadian Standard Association (CSA). CSA-S6: Canadian Highway Bridge Design Code. Rexdale, ON, 2006.
  • RPA99 version 2003, Algerian Seismic Regulations, DTR BC 2.48, Earthquake Engineering National Research Centre, Algiers, 9961-923-13-8, 2004.
  • Seismosoft 2020, SeismoArtif – A computer program for generation of artificial accelerograms. Available from URL: www.seismosoft.com accessed 12-03-2021.
  • Celik A., Yalciner H., Kumbasaroglu A., Turan A.I., An experimental study on seismic performance levels of highly corroded reinforced concrete columns. Struct Concr. 2021;1–19. https://doi.org/10.1002/suco.202100065

Corrosion Rate-Based Adjustment of Plastic Hinge Parameters of Corroded RC Elements

Year 2024, , 103 - 123, 01.03.2024
https://doi.org/10.18400/tjce.1214088

Abstract

In line with the trend towards predictive seismic codes adopting the performance-based design method, this paper presents an integrated protocol to determine the degraded hysteresis parameters of corroded RC hinges based on relationships developed for this purpose together with a calibration procedure using the random-mutation hill-climbing algorithm. The adjustment procedure is integrated into the material library of the OpenSees software and used to perform nonlinear dynamic analyses to investigate the seismic performance of a typical bridge with affected piers at different corrosion levels. In practice the proposed procedure permits to assess the seismic performance of existing or new structures for a given corrosion rate distribution.

Project Number

Grant CNEPRU J0400420140001

References

  • Li W., Xu C., Ho S.C., Wang B., Song G., Monitoring concrete deterioration due to reinforcement corrosion by integrating acoustic emission and FBG strain measurements. Sensors. 2017;17(3):657. https://doi.org/10.3390/s17030657
  • Bertolini L., Elsener B., Pedeferri P., Redaelli E., Polder R., Corrosion of steel in concrete: Prevention, diagnosis, repair (2nd ed.); Weinheim, Germany: Wiley VCH; 2013.
  • Andrade C., Propagation of reinforcement corrosion: principles, testing and modelling, Mater Struct. 2019; 52:2, https://doi.org/10.1617/s11527-018-1301-1
  • François R., Laurens S., Deby F., Steel corrosion in reinforced concrete, Editor(s): Raoul François, Stéphane Laurens, Fabrice Deby, Corrosion and its consequences for reinforced concrete structures, Elsevier, 2018; 1-41, ISBN 9781785482342, https://doi.org/10.1016/B978-1-78548-234-2.50001-9
  • Bertolini L., Steel corrosion and service life of reinforced concrete structures, Struct Infrastruct Eng. 4:2, 123-137, http://dx.10.1080/15732470601155490
  • Şengül, Ö. (2011). Probabilistic Design for the Durability of Reinforced Concrete Structural Elements Exposed to Chloride Containing Environments . Teknik Dergi , 22 (110) , 1461-1475, https://dergipark.org.tr/en/pub/tekderg/issue/12749/155174
  • Andisheh K., Scott A., Palermo A., Seismic behavior of corroded RC bridges: Review and research gaps, Int J Corros. 2016, Article ID 3075184, http://dx.doi.org/10.1155/2016/3075184.
  • Inci P., Goksu C., Ilki A., Kumbasar N., Effects of reinforcement corrosion on the performance of RC frame buildings subjected to seismic actions. Journal of Performance of Constructed Facilities, 27(6), 683–696. doi:10.1061/(asce) cf.1943-5509.0000378
  • Nataraj S., Hogan L., Scott A., Ingham J., Simplified Mechanics-Based Approach for the Seismic Assessment of Corroded Reinforced Concrete Structures J Struct Eng., 2022, 148(3), 04021296, doi10.1061/(ASCE)ST.1943-541X.0003265.
  • Opabola E. A., Residual seismic capacity of beam-column components with corroded reinforcement, Constr. Build. Mat. 332 (2022) 127269, https://doi.org/10.1016/j.conbuildmat.2022.127269
  • Bourahla N., Tafraout S., Attar A., Nonlinear dynamic response of aging degraded reinforced concrete structures under earthquake loading, Proceedings of the 14th European Conference on Earthquake Engineering, Ohrid Macedonia 2010, paper 537.
  • Akiyama M., Frangopol D.M., Long-term seismic performance of RC structures in an aggressive environment: emphasis on bridge piers, Struct Infrastruct Eng. 2014;10:7, 865-879, doi: 10.1080/15732479.2012.7612
  • Choe D.E., Gardoni P., Rosowsky D., Haukaas T., Seismic fragility estimates for reinforced concrete bridges subject to corrosion. Struct. Saf., 2009;31(4), 275-283. doi:10.1016/j.strusafe.2008.10.001
  • Hu S., Wang Z., Guo Y., Xiao G., Life-cycle seismic fragility assessment of existing RC bridges subject to chloride-induced corrosion in marine environment. Adv Civ Eng. 2021, Article ID 9640521, 18 pages, https://doi.org/10.1155/2021/964052
  • Domaneschi M., De Gaetano A., Casas J.R., Cimellaro G.P., Deteriorated seismic capacity assessment of reinforced concrete bridge piers in corrosive environment. Struct Concr. 2020;1–16. https://doi.org/10.1002/suco.202000106
  • Naderpour H., Ghasemi-Meydansar F., Haji M., Experimental study on the behavior of RC beams with artificially corroded bars, Structures, Volume 43, 2022, pp1932-1944, https://doi.org/10.1016/j.istruc.2022.07.005.
  • Goksu C. and Ilki A., Seismic behavior of reinforced concrete columns with corroded deformed reinforcing Bars, ACI Structural Journal 113 (5) 2016: 1053-1064, DOI:10.14359/51689030
  • Meda A., Mostosi S., Rinaldi Z., Riva P., Experimental evaluation of the corrosion influence on the cyclic behaviour of RC columns. Eng Struct, 2014; 76: 112 − 123. doi:10.1016/j.engstruct.2014.06.043
  • Kim T.H., Seismic performance assessment of deteriorated two-span reinforced concrete bridges. Int J Concr Struct Mater 2022; 16:4 https://doi.org/10.1186/s40069-022-00498-
  • Scattarreggia N., Qiao T., Malomo D., Earthquake response modeling of corroded reinforced concrete hollow-section piers via simplified fiber-based FE analysis. Sustain 2021; 13, 9342. https://doi.org/10.3390/su13169342
  • Ibarra L.F., Medina R.A., Krawinkler H., Hysteretic models that incorporate strength and stiffness deterioration, Earthq Eng Struct Dyn, 2005; 34(12), 1489-1511. https://doi.org/10.1002/eqe.495
  • McKenna F., OpenSees: A Framework for earthquake engineering simulation, Comput Sci Eng. 2011; 13(4), 58-66, doi:10.1109/MCSE.2011.66.
  • Haselton C.B., Liel A.B., Lange S.T., Deierlein G.G., Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings, PEER Report 2007/03, PEER Center, University of California, Berkeley, 2008.
  • Panagiotakos T.B., Fardis M.N., Deformations of reinforced concrete at yielding and ultimate, ACI Struct J, 2001; 98(2), 135-147.
  • Özyurt N., Söylev T. A., Özturan T., Pehlivan A.O., Niş A., Corrosion and chloride diffusivity of reinforced concrete cracked under sustained flexure. Teknik Dergi 31 2020: 10315-10337
  • Bezuidenhout S.R., Van Zijl G.P.A.G., Corrosion propagation in cracked reinforced concrete, toward determining residual service life. Struct Concr. 2019;1–11. https://doi.org/10.1002/suco.201800275
  • Bossio A., Lignola G.P., Fabbrocino F., Monetta T., Prota A., Bellucci F., Manfredi G., Nondestructive assessment of corrosion of reinforcing bars through surface concrete cracks, struct concr, 2017;18(1), 104-117. https://doi.org/10.1002/suco.201600034.
  • Khan I., François R., Castel A., Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams. Cem. Concr. Res. 2014, 56, 84–96. https://doi.org/10.1016/j.cemconres.2013.11.006
  • Nikoo M., Sadowski Ł., Nikoo M., Prediction of the corrosion current density in reinforced concrete using a self-organizing feature map. Coatings 2017; 7, 160. https://doi.org/10.3390/coatings7100160
  • Du Y.G., Clark L.A., Chan A.H.C., Effect of corrosion on ductility of reinforcing bars. Mag Concr Res. 2005; 57(7), 407-419. doi:10.1680/macr.2005.57.7.407
  • González J.A., Andrade C., Alonso C., Feliu S., Comparison of rates of general corrosion and maximum pitting penetration on concrete embedded steel reinforcement. Cem. Concr. Res.1995; 25(2), 257–264. doi:10.1016/0008-8846(95)00006-2
  • Du Y.G., Clark L.A., Chan A.H.C., Residual capacity of corroded reinforcing bars, 2005, Mag Concr Res. 57(3), 135-147. doi:10.1680/macr.2005.57.3.135
  • Tapan M., Aboutaha R.S., Effect of steel corrosion and loss of concrete cover on strength of deteriorated RC columns, Constr. Build. Mat. 25 (2011) 2596–2603, doi:10.1016/j.conbuildmat.2010.12.003
  • Apostolopoulos C., Koulouris K.F., Apostolopoulos A.C., Correlation of surface cracks of concrete due to corrosion and bond strength (between steel bar and concrete), Advances in Civil Engineering, vol. 2019, Article ID 3438743. https://doi.org/10.1155/2019/3438743
  • Coronelli D., Gambarova P., Structural assessment of corroded reinforced concrete beams: Modeling guidelines. J Struct Eng. 2004;130(8), 1214–1224. doi:10.1061/(asce)0733-9445(2004)130:8(1214).
  • Poursaee A., Corrosion of steel in concrete structures, 1st Edition, Woodhead Publishing, ISBN - 13:9781782423812.
  • Yang S.Y., Song X.B., Jia H.X., Chen X., Liu X.L., Experimental research on hysteretic behaviors of corroded reinforced concrete columns with different maximum amounts of corrosion of rebar. Construct Build Mater, 2016; 121, 319–327. doi:10.1016/j.conbuildmat.2016.06.002
  • Taborda D.M.G., Zdravkovic L., Application of a Hill-Climbing technique to the formulation of a new cyclic nonlinear elastic constitutive model. Comput Geotech. 2012; 43, 80–91. doi:10.1016/j.compgeo.2012.02.001
  • Ibarra L., Krawinkler H., Global collapse of frame structures under seismic excitations. Blume Center TR 152, Stanford University; 2003.
  • Khaled A., Tremblay R., Massicotte B., Combination rule for the prediction of the seismic demand on columns of regular bridges under bidirectional earthquake components. Can J Civ Eng. 2011 38(6), 698–709. doi:10.1139/l11-031
  • Canadian Standard Association (CSA). CSA-S6: Canadian Highway Bridge Design Code. Rexdale, ON, 2006.
  • RPA99 version 2003, Algerian Seismic Regulations, DTR BC 2.48, Earthquake Engineering National Research Centre, Algiers, 9961-923-13-8, 2004.
  • Seismosoft 2020, SeismoArtif – A computer program for generation of artificial accelerograms. Available from URL: www.seismosoft.com accessed 12-03-2021.
  • Celik A., Yalciner H., Kumbasaroglu A., Turan A.I., An experimental study on seismic performance levels of highly corroded reinforced concrete columns. Struct Concr. 2021;1–19. https://doi.org/10.1002/suco.202100065
There are 44 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Mustapha Benredouane 0000-0003-3680-8258

Nouredine Bourahla 0000-0002-1377-5943

Anouar Ghodbane 0009-0008-8832-2544

Hala Khalfaoui 0009-0003-1364-6636

Project Number Grant CNEPRU J0400420140001
Early Pub Date October 24, 2023
Publication Date March 1, 2024
Submission Date December 6, 2022
Published in Issue Year 2024

Cite

APA Benredouane, M., Bourahla, N., Ghodbane, A., Khalfaoui, H. (2024). Corrosion Rate-Based Adjustment of Plastic Hinge Parameters of Corroded RC Elements. Turkish Journal of Civil Engineering, 35(2), 103-123. https://doi.org/10.18400/tjce.1214088
AMA Benredouane M, Bourahla N, Ghodbane A, Khalfaoui H. Corrosion Rate-Based Adjustment of Plastic Hinge Parameters of Corroded RC Elements. tjce. March 2024;35(2):103-123. doi:10.18400/tjce.1214088
Chicago Benredouane, Mustapha, Nouredine Bourahla, Anouar Ghodbane, and Hala Khalfaoui. “Corrosion Rate-Based Adjustment of Plastic Hinge Parameters of Corroded RC Elements”. Turkish Journal of Civil Engineering 35, no. 2 (March 2024): 103-23. https://doi.org/10.18400/tjce.1214088.
EndNote Benredouane M, Bourahla N, Ghodbane A, Khalfaoui H (March 1, 2024) Corrosion Rate-Based Adjustment of Plastic Hinge Parameters of Corroded RC Elements. Turkish Journal of Civil Engineering 35 2 103–123.
IEEE M. Benredouane, N. Bourahla, A. Ghodbane, and H. Khalfaoui, “Corrosion Rate-Based Adjustment of Plastic Hinge Parameters of Corroded RC Elements”, tjce, vol. 35, no. 2, pp. 103–123, 2024, doi: 10.18400/tjce.1214088.
ISNAD Benredouane, Mustapha et al. “Corrosion Rate-Based Adjustment of Plastic Hinge Parameters of Corroded RC Elements”. Turkish Journal of Civil Engineering 35/2 (March 2024), 103-123. https://doi.org/10.18400/tjce.1214088.
JAMA Benredouane M, Bourahla N, Ghodbane A, Khalfaoui H. Corrosion Rate-Based Adjustment of Plastic Hinge Parameters of Corroded RC Elements. tjce. 2024;35:103–123.
MLA Benredouane, Mustapha et al. “Corrosion Rate-Based Adjustment of Plastic Hinge Parameters of Corroded RC Elements”. Turkish Journal of Civil Engineering, vol. 35, no. 2, 2024, pp. 103-2, doi:10.18400/tjce.1214088.
Vancouver Benredouane M, Bourahla N, Ghodbane A, Khalfaoui H. Corrosion Rate-Based Adjustment of Plastic Hinge Parameters of Corroded RC Elements. tjce. 2024;35(2):103-2.