Research Article
BibTex RIS Cite

From Cut-in to Qanats - Ancient Groundwater Extraction Techniques

Year 2024, , 65 - 85, 01.03.2024
https://doi.org/10.18400/tjce.1247836

Abstract

Where a hillside stratified aquifer intersects the earth surface, springs and outseeping are observed. Cutting into this zone, thus opening it by digging, allows to increase and capture water outflow. As a matter of principle this classical method for water extraction without pumping, which is still found in hilly rural regions today, was already used 3600 years ago by the Hittites to fill the ponds of their capital Hattuşa in Central Anatolia. The today sedimented reservoirs were dug downhill of groundwater bearing zones. Rising in winter, groundwater discharged into the ponds through alongside cuts. The Hittites avoided the risks of strongly varying surface flows by opening near-surface groundwater and stratum aquifers. Although hydraulic investigation based on in-situ measurement of groundwater level supports the short-term efficiency of the ponds in supplying water to the ancient city, at the long-term, the decline of the Empire was probably triggered by severe droughts expanded over years. This seems plausible as severe droughts are still being experienced. For a higher and more reliable water yield, the further development went from ’cutting’ in to ’penetrating’ into the aquifer with tunnel-like drain conduits which collected the water and conveyed it to settlements and irrigation schemes. The improved water extraction system, named qanats, appeared in Eastern Anatolia and Persia about 500 years after the abandon of Hattuşa. An example of a qanat system in western Iran is presented in this study with less emphasis compared to the cut-in yet representative enough to demonstrate its role in supplying water sustainably. We conclude that the ancient time thinking is the same as that of modern engineering, and the ancient time hydraulic works are fundamental for today's civil structures.

References

  • Blöschl G, ... (2019) Twenty-three unsolved problems in hydrology (UPH) - a community perspective, Hydrological Sciences Journal, 64(10), 1141-1158. doi: 10.1080/02626667.2019.1620507
  • Bulut B, Yilmaz MT (2016) Türkiye’deki 2007 ve 2013 yılı kuraklıklarının NOAH hidrolojik modeli ile incelenmesi. Teknik Dergi, 7619-7634, Yazi 463.
  • Cavus Y, Aksoy H (2020) Critical drought severity/intensity-duration-frequency curves based on precipitation deficit. Journal of Hydrology, 584 (7), 124312. doi: 10.1016/j.jhydrol.2019.124312
  • Dikbas F, Bacanli UG (2021) Detecting drought varaiability by using two-dimensional correlation analysis. Teknik Dergi, 10947-10965, Paper 619. https://doi.org/10.18400/tekderg.559195
  • Aksoy H, Cetin M, Eris E, Burgan HI, Cavus Y, Yildirim I, Sivapalan M (2021) Critical drought intensity-duration-frequency curves based on total probability theorem-coupled frequency analysis. Hydrological Sciences Journal, 66 (8), 1337-1358. doi:10.1080/02626667.2021.1934473
  • Cavus Y, Stahl K, Aksoy H (2023) Drought intensity-duration-frequency curves based on deficit in precipitation and streamflow for water resources management, Hydrology and Earth System Science, 27, 3427-3445. doi:10.5194/hess-27-3427-2023.
  • Kreibich H, ... (2022) The challenge of unprecedented floods and droughts in risk management. Nature 608, 80–86. https://doi.org/10.1038/s41586-022-04917-5
  • Kreibich H, ... (2023) Panta Rhei benchmark dataset: socio-hydrological data of paired events of floods and droughts. Earth Syst. Sci. Data, 15, 2009–2023. https://doi.org/10.5194/essd-15-2009-2023
  • Peterson LC, Haug GH (2005) Climate and the collapse of Maya civilization: a series of multi-year droughts helped to doom an ancient culture. American Scientists, 93, 322-329.
  • Evans NP, Bauska TK, Gazquez-Sanchez F, Brenner M, Curtis JH, Hodell DA (2018) Quantification of drought during the collapse of the classi Maya civilization. Science 361: 498-501. https://doi.org/10.1126/science.aas9871
  • Kennett DJ, Masson M, Lope CP, Serafin S, George RJ, Spencer TC, Hoggarth JA, Culleton BJ, Harper TK, Prufer KM, Milbrath S, Russell BW, González EU, McCool WC, Aquino VV, Paris EH, Curtis JH, Marwan N, Zhang M, Asmerom Y, Polyak VJ, Carolin SA, James DH, Mason AJ, Henderson GM, Brenner M, Baldini JUL, Breitenbach SFM, Hodell DA (2022) Drought-induced civil conflict among the ancient Maya. Nat Commun 13, 3911. https://doi.org/10.1038/s41467-022-31522-x
  • Manning SW, Kocik C, Lorentzen B, Sparks JP (2023) Severe multi-year drought coincident with Hittite collapse around 1198–1196 BC. Nature 614: 719-724. https://doi.org/10.1038/s41586-022-05693-y
  • Durusu-Tanriover M (2023) Signs of climate crisis as an ancient empire unraveled. Nature 614: 625-626
  • Li, Z., Chen, Y., Wang, Y. Li W (2016) Drought promoted the disappearance of civilizations along the ancient Silk Road. Environ Earth Sci 75, 1116 (2016). https://doi.org/10.1007/s12665-016-5925-6
  • Ozis U (1987) Ancient water works in Anatolia. International Journal of Water Resources Development 3(1):55-62. https://doi.org/10.1080/07900628708722333
  • Wittenberg H (2014) Groundwater use in the Hittite capital Hattuşa 1600 BC. In C. Ohlig (ed.), Schriften DWhG, 21:139-147.
  • Seeher, J (2001), Die Ausgrabungen in Boğazköy-Hattuša 2000. Archäologischer Anzeiger 2001, Heft 3, 340-362.
  • Wittenberg H, Schachner A (2013) The Ponds of Hattuşa – Early Groundwater Management in the Hittite Kingdom. Water Science and Technology: Water Supply, 13(3):692-697, 2013.
  • Laessøe J (1951) The irrigation system at Ulhu, 8th century B.C. J Cuneiform Studies 5:21-32.
  • Vaughan CS (2021, February 08) Qanat. World History Encyclopedia. Retrieved from https://www.worldhistory.org/qanat/
  • Kobori I (1973) Some notes on diffusion of qanat. Orient 9:43-66.
  • Goldsmith E (1968) The qanats of Iran. SciAm 218(4):94–105. https://doi.org/10.1038/scientificamerican0468-94
  • Wilson A (2008) Hydraulic Engineering and Water Supply. In Oleson, John Peter (ed.). Handbook of Engineering and Technology in the Classical World (PDF). New York: Oxford University Press. pp. 290–293. ISBN 978-0-19-973485-6
  • Nikravesh M, Ardakanian R, Alemohammad SH (2009) Institutional capacity development of water resources management in Iran. Capacity development for improved water management, 159.
  • Manuel M, Lightfoot D, Fattahi M (2018) The sustainability of ancient water control techniques in Iran: an overview. Water Hist 10:13–30. https://doi.org/10.1007/s12685-017-0200-7
  • Hu WJ, Zhang JB, Liu YQ (2012) The qanats of Xinjiang: historical development, characteristics and modern implications for environmental protection. Journal of Arid Land 4(2):211-220. https://doi.org/10.3724/SP.J.1227.2012.00211
  • Hussain I, Abu-Rizaiza OS, Habib MA, Ashfaq M (2008) Revitalizing a traditional dryland water supply system: the karezes in Afghanistan, Iran, Pakistan and the Kingdom of Saudi Arabia. Water Int 33(3):333-349. https://doi.org/10.1080/02508060802255890
  • FAO (Food and Agriculture Organization) (2021). Qanat-based Saffron Farming System in Gonabad, Iran. https://www.fao.org/giahs/giahsaroundtheworld/designated-sites/asia-and-the-pacific/qanat-based-saffron-farming-system-in-gonabad/ru/ Accessed October 2021
  • Macpherson GL, Johnson WC, Liu H (2017) Viability of karezes (ancient water supply systems in Afghanistan) in a changing world. Appl Water Sci 7:1689–1710. https://doi.org/10.1007/s13201-015-0336-5
  • Boutadara Y, Remini B, Benmamar S (2018) The foggaras of Bouda (Algeria): from drought to flood. Appl Water Sci 8:162. https://doi.org/10.1007/s13201-018-0822-7
  • Beaumont P (1971) Qanat systems in Iran. Hydrol Sci J 16(1):39-50. https://doi.org/10.1080/02626667109493031
  • Lightfoot DR (1996a) Syrian qanat Romani: history, ecology, abandonment. J Arid Environ 33(3):321-336. https://doi.org/10.1006/jare.1996.0068
  • Endreny TA (2008) Estimating recharge rates for qanat-based water supply in Northern Cyprus: a case study using remotely sensed and in-situ data. Urban Water J 5(2):161-171. https://doi.org/10.1080/15730620701754202
  • Remini B, Achour B (2013) The qanat of the greatest western Erg. Journal of American Water Works Association, 105(5):104-107.
  • Luo L, Wang X, Guo H, Liu C, Liu J, Li L, Du X, Qian G (2014) Automated extraction of the archaeological tops of qanat shafts from VHR imagery in google earth. Remote Sens 6(12):11956-11976. https://doi.org/10.3390/rs61211956
  • Goes BJM, Parajuli UN, Haq M, Wardlaw RB (2017) Karez (qanat) irrigation in the Helmand River Basin, Afghanistan: a vanishing indigenous legacy. Hydrogeol J 25(2):269-286. https://doi.org/10.1007/s10040-016-1490-z
  • Remini B, Achour B, Albergel J (2015) The qanat of Algerian Sahara: an evolutionary hydraulic system. Appl Water Sci 5:359-366. https://doi.org/10.1007/s13201-014-0195-5
  • Neve P (1991). Die Ausgrabungen in Boğazköy-Ḫattuşa. Archäologischer Anzeiger 1991/3, 299‒348.
  • Marotz G (1968) Technische Grundlagen einer Wasserspeicherung im natürlichen Untergrund. VerlagWasser und Boden, 228 p.
  • Jafari Bari M, Gohari, E, Jafari Z, Amiri JS (2008) Final report: Investigation of the use of underground dams in the water resources management of Qanats. Case of study: Sufi-Maku Flood plain Qanats. Ministry of Agriculture, Institute of Soil protection and watershed management. Project No. 82-0500402000-08.
  • Zwickel W (2007) Regen, Dürre, Hungersnöte. Die Erforschung des Klimas in Palästina in den letzten 10.000 Jahren, Welt und Umwelt der Bibel 46:2-7.
  • Cavus Y, Aksoy H (2019) Spatial drought characterization for Seyhan River basin in the Mediterranean region of Turkey. Water, 11 (7), 1331. https://doi:10.3390/w11071331
  • Cavus Y, Stahl K, Aksoy H (2022) Revisiting major dry periods by rolling time series analysis for human-water relevance in drought. Water Resour Manag 36:2725-2739. https://doi.org/10.1007/s11269-022-03171-8

From Cut-in to Qanats - Ancient Groundwater Extraction Techniques

Year 2024, , 65 - 85, 01.03.2024
https://doi.org/10.18400/tjce.1247836

Abstract

Where a hillside stratified aquifer intersects the earth surface, springs and outseeping are observed. Cutting into this zone, thus opening it by digging, allows to increase and capture water outflow. As a matter of principle this classical method for water extraction without pumping, which is still found in hilly rural regions today, was already used 3600 years ago by the Hittites to fill the ponds of their capital Hattuşa in Central Anatolia. The today sedimented reservoirs were dug downhill of groundwater bearing zones. Rising in winter, groundwater discharged into the ponds through alongside cuts. The Hittites avoided the risks of strongly varying surface flows by opening near-surface groundwater and stratum aquifers. Although hydraulic investigation based on in-situ measurement of groundwater level supports the short-term efficiency of the ponds in supplying water to the ancient city, at the long-term, the decline of the Empire was probably triggered by severe droughts expanded over years. This seems plausible as severe droughts are still being experienced. For a higher and more reliable water yield, the further development went from ’cutting’ in to ’penetrating’ into the aquifer with tunnel-like drain conduits which collected the water and conveyed it to settlements and irrigation schemes. The improved water extraction system, named qanats, appeared in Eastern Anatolia and Persia about 500 years after the abandon of Hattuşa. An example of a qanat system in western Iran is presented in this study with less emphasis compared to the cut-in yet representative enough to demonstrate its role in supplying water sustainably. We conclude that the ancient time thinking is the same as that of modern engineering, and the ancient time hydraulic works are fundamental for today's civil structures.

References

  • Blöschl G, ... (2019) Twenty-three unsolved problems in hydrology (UPH) - a community perspective, Hydrological Sciences Journal, 64(10), 1141-1158. doi: 10.1080/02626667.2019.1620507
  • Bulut B, Yilmaz MT (2016) Türkiye’deki 2007 ve 2013 yılı kuraklıklarının NOAH hidrolojik modeli ile incelenmesi. Teknik Dergi, 7619-7634, Yazi 463.
  • Cavus Y, Aksoy H (2020) Critical drought severity/intensity-duration-frequency curves based on precipitation deficit. Journal of Hydrology, 584 (7), 124312. doi: 10.1016/j.jhydrol.2019.124312
  • Dikbas F, Bacanli UG (2021) Detecting drought varaiability by using two-dimensional correlation analysis. Teknik Dergi, 10947-10965, Paper 619. https://doi.org/10.18400/tekderg.559195
  • Aksoy H, Cetin M, Eris E, Burgan HI, Cavus Y, Yildirim I, Sivapalan M (2021) Critical drought intensity-duration-frequency curves based on total probability theorem-coupled frequency analysis. Hydrological Sciences Journal, 66 (8), 1337-1358. doi:10.1080/02626667.2021.1934473
  • Cavus Y, Stahl K, Aksoy H (2023) Drought intensity-duration-frequency curves based on deficit in precipitation and streamflow for water resources management, Hydrology and Earth System Science, 27, 3427-3445. doi:10.5194/hess-27-3427-2023.
  • Kreibich H, ... (2022) The challenge of unprecedented floods and droughts in risk management. Nature 608, 80–86. https://doi.org/10.1038/s41586-022-04917-5
  • Kreibich H, ... (2023) Panta Rhei benchmark dataset: socio-hydrological data of paired events of floods and droughts. Earth Syst. Sci. Data, 15, 2009–2023. https://doi.org/10.5194/essd-15-2009-2023
  • Peterson LC, Haug GH (2005) Climate and the collapse of Maya civilization: a series of multi-year droughts helped to doom an ancient culture. American Scientists, 93, 322-329.
  • Evans NP, Bauska TK, Gazquez-Sanchez F, Brenner M, Curtis JH, Hodell DA (2018) Quantification of drought during the collapse of the classi Maya civilization. Science 361: 498-501. https://doi.org/10.1126/science.aas9871
  • Kennett DJ, Masson M, Lope CP, Serafin S, George RJ, Spencer TC, Hoggarth JA, Culleton BJ, Harper TK, Prufer KM, Milbrath S, Russell BW, González EU, McCool WC, Aquino VV, Paris EH, Curtis JH, Marwan N, Zhang M, Asmerom Y, Polyak VJ, Carolin SA, James DH, Mason AJ, Henderson GM, Brenner M, Baldini JUL, Breitenbach SFM, Hodell DA (2022) Drought-induced civil conflict among the ancient Maya. Nat Commun 13, 3911. https://doi.org/10.1038/s41467-022-31522-x
  • Manning SW, Kocik C, Lorentzen B, Sparks JP (2023) Severe multi-year drought coincident with Hittite collapse around 1198–1196 BC. Nature 614: 719-724. https://doi.org/10.1038/s41586-022-05693-y
  • Durusu-Tanriover M (2023) Signs of climate crisis as an ancient empire unraveled. Nature 614: 625-626
  • Li, Z., Chen, Y., Wang, Y. Li W (2016) Drought promoted the disappearance of civilizations along the ancient Silk Road. Environ Earth Sci 75, 1116 (2016). https://doi.org/10.1007/s12665-016-5925-6
  • Ozis U (1987) Ancient water works in Anatolia. International Journal of Water Resources Development 3(1):55-62. https://doi.org/10.1080/07900628708722333
  • Wittenberg H (2014) Groundwater use in the Hittite capital Hattuşa 1600 BC. In C. Ohlig (ed.), Schriften DWhG, 21:139-147.
  • Seeher, J (2001), Die Ausgrabungen in Boğazköy-Hattuša 2000. Archäologischer Anzeiger 2001, Heft 3, 340-362.
  • Wittenberg H, Schachner A (2013) The Ponds of Hattuşa – Early Groundwater Management in the Hittite Kingdom. Water Science and Technology: Water Supply, 13(3):692-697, 2013.
  • Laessøe J (1951) The irrigation system at Ulhu, 8th century B.C. J Cuneiform Studies 5:21-32.
  • Vaughan CS (2021, February 08) Qanat. World History Encyclopedia. Retrieved from https://www.worldhistory.org/qanat/
  • Kobori I (1973) Some notes on diffusion of qanat. Orient 9:43-66.
  • Goldsmith E (1968) The qanats of Iran. SciAm 218(4):94–105. https://doi.org/10.1038/scientificamerican0468-94
  • Wilson A (2008) Hydraulic Engineering and Water Supply. In Oleson, John Peter (ed.). Handbook of Engineering and Technology in the Classical World (PDF). New York: Oxford University Press. pp. 290–293. ISBN 978-0-19-973485-6
  • Nikravesh M, Ardakanian R, Alemohammad SH (2009) Institutional capacity development of water resources management in Iran. Capacity development for improved water management, 159.
  • Manuel M, Lightfoot D, Fattahi M (2018) The sustainability of ancient water control techniques in Iran: an overview. Water Hist 10:13–30. https://doi.org/10.1007/s12685-017-0200-7
  • Hu WJ, Zhang JB, Liu YQ (2012) The qanats of Xinjiang: historical development, characteristics and modern implications for environmental protection. Journal of Arid Land 4(2):211-220. https://doi.org/10.3724/SP.J.1227.2012.00211
  • Hussain I, Abu-Rizaiza OS, Habib MA, Ashfaq M (2008) Revitalizing a traditional dryland water supply system: the karezes in Afghanistan, Iran, Pakistan and the Kingdom of Saudi Arabia. Water Int 33(3):333-349. https://doi.org/10.1080/02508060802255890
  • FAO (Food and Agriculture Organization) (2021). Qanat-based Saffron Farming System in Gonabad, Iran. https://www.fao.org/giahs/giahsaroundtheworld/designated-sites/asia-and-the-pacific/qanat-based-saffron-farming-system-in-gonabad/ru/ Accessed October 2021
  • Macpherson GL, Johnson WC, Liu H (2017) Viability of karezes (ancient water supply systems in Afghanistan) in a changing world. Appl Water Sci 7:1689–1710. https://doi.org/10.1007/s13201-015-0336-5
  • Boutadara Y, Remini B, Benmamar S (2018) The foggaras of Bouda (Algeria): from drought to flood. Appl Water Sci 8:162. https://doi.org/10.1007/s13201-018-0822-7
  • Beaumont P (1971) Qanat systems in Iran. Hydrol Sci J 16(1):39-50. https://doi.org/10.1080/02626667109493031
  • Lightfoot DR (1996a) Syrian qanat Romani: history, ecology, abandonment. J Arid Environ 33(3):321-336. https://doi.org/10.1006/jare.1996.0068
  • Endreny TA (2008) Estimating recharge rates for qanat-based water supply in Northern Cyprus: a case study using remotely sensed and in-situ data. Urban Water J 5(2):161-171. https://doi.org/10.1080/15730620701754202
  • Remini B, Achour B (2013) The qanat of the greatest western Erg. Journal of American Water Works Association, 105(5):104-107.
  • Luo L, Wang X, Guo H, Liu C, Liu J, Li L, Du X, Qian G (2014) Automated extraction of the archaeological tops of qanat shafts from VHR imagery in google earth. Remote Sens 6(12):11956-11976. https://doi.org/10.3390/rs61211956
  • Goes BJM, Parajuli UN, Haq M, Wardlaw RB (2017) Karez (qanat) irrigation in the Helmand River Basin, Afghanistan: a vanishing indigenous legacy. Hydrogeol J 25(2):269-286. https://doi.org/10.1007/s10040-016-1490-z
  • Remini B, Achour B, Albergel J (2015) The qanat of Algerian Sahara: an evolutionary hydraulic system. Appl Water Sci 5:359-366. https://doi.org/10.1007/s13201-014-0195-5
  • Neve P (1991). Die Ausgrabungen in Boğazköy-Ḫattuşa. Archäologischer Anzeiger 1991/3, 299‒348.
  • Marotz G (1968) Technische Grundlagen einer Wasserspeicherung im natürlichen Untergrund. VerlagWasser und Boden, 228 p.
  • Jafari Bari M, Gohari, E, Jafari Z, Amiri JS (2008) Final report: Investigation of the use of underground dams in the water resources management of Qanats. Case of study: Sufi-Maku Flood plain Qanats. Ministry of Agriculture, Institute of Soil protection and watershed management. Project No. 82-0500402000-08.
  • Zwickel W (2007) Regen, Dürre, Hungersnöte. Die Erforschung des Klimas in Palästina in den letzten 10.000 Jahren, Welt und Umwelt der Bibel 46:2-7.
  • Cavus Y, Aksoy H (2019) Spatial drought characterization for Seyhan River basin in the Mediterranean region of Turkey. Water, 11 (7), 1331. https://doi:10.3390/w11071331
  • Cavus Y, Stahl K, Aksoy H (2022) Revisiting major dry periods by rolling time series analysis for human-water relevance in drought. Water Resour Manag 36:2725-2739. https://doi.org/10.1007/s11269-022-03171-8
There are 43 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Hartmut Wıttenberg 0000-0001-6467-1194

Hafzullah Aksoy 0000-0001-5807-5660

Early Pub Date October 23, 2023
Publication Date March 1, 2024
Submission Date February 8, 2023
Published in Issue Year 2024

Cite

APA Wıttenberg, H., & Aksoy, H. (2024). From Cut-in to Qanats - Ancient Groundwater Extraction Techniques. Turkish Journal of Civil Engineering, 35(2), 65-85. https://doi.org/10.18400/tjce.1247836
AMA Wıttenberg H, Aksoy H. From Cut-in to Qanats - Ancient Groundwater Extraction Techniques. tjce. March 2024;35(2):65-85. doi:10.18400/tjce.1247836
Chicago Wıttenberg, Hartmut, and Hafzullah Aksoy. “From Cut-in to Qanats - Ancient Groundwater Extraction Techniques”. Turkish Journal of Civil Engineering 35, no. 2 (March 2024): 65-85. https://doi.org/10.18400/tjce.1247836.
EndNote Wıttenberg H, Aksoy H (March 1, 2024) From Cut-in to Qanats - Ancient Groundwater Extraction Techniques. Turkish Journal of Civil Engineering 35 2 65–85.
IEEE H. Wıttenberg and H. Aksoy, “From Cut-in to Qanats - Ancient Groundwater Extraction Techniques”, tjce, vol. 35, no. 2, pp. 65–85, 2024, doi: 10.18400/tjce.1247836.
ISNAD Wıttenberg, Hartmut - Aksoy, Hafzullah. “From Cut-in to Qanats - Ancient Groundwater Extraction Techniques”. Turkish Journal of Civil Engineering 35/2 (March 2024), 65-85. https://doi.org/10.18400/tjce.1247836.
JAMA Wıttenberg H, Aksoy H. From Cut-in to Qanats - Ancient Groundwater Extraction Techniques. tjce. 2024;35:65–85.
MLA Wıttenberg, Hartmut and Hafzullah Aksoy. “From Cut-in to Qanats - Ancient Groundwater Extraction Techniques”. Turkish Journal of Civil Engineering, vol. 35, no. 2, 2024, pp. 65-85, doi:10.18400/tjce.1247836.
Vancouver Wıttenberg H, Aksoy H. From Cut-in to Qanats - Ancient Groundwater Extraction Techniques. tjce. 2024;35(2):65-8.