Research Article
BibTex RIS Cite

Clustering of Basins in Northern Cyprus Using Morphometric Parameters

Year 2023, , 31 - 54, 01.09.2023
https://doi.org/10.18400/tjce.1312155

Abstract

The classification of hydrologically similar basins is essential in transferring information from gauged basins to ungauged basins. In this study, the basins in Northern Cyprus were classified into five different clusters with the hybrid hierarchical k-means clustering method, taking into account some basic, linear, areal, and relief morphometric basin characteristics. With these morphometric parameters obtained using geographic information systems (GIS), the hydrological and morphological characteristics of the basins and the formed basin clusters were examined in detail. According to the results, it has been determined that the main stream branches in most of the basins are composed of medium streams. Only the basins in Cluster 1 and some in Cluster 4 include streams that can be defined as rivers. It has been determined that most of the basins have a well-developed drainage network and low drainage densities. In addition, it has been determined that the basins in Clusters 1 and 3 are more prone to natural disasters, such as floods, with their high basin relief features.

References

  • Papageorgaki, I., Nalbantis, I., Classification of Drainage Basins Based on Readily Available Information. Water Resour. Manag., 30(15), 5559-5574, 2016.
  • Hrachowitz, M., Savenije, H. H. G., Blöschl, G., McDonnell, J. J., Sivapalan, M., Pomeroy, J. W., ... Cudennec, C. A decade of Predictions in Ungauged Basins (PUB)-A review. Hydrol. Sci. J, 58(6), 1198-1255, 2013.
  • Guo, Y., Zhang, Y., Zhang, L., Wang, Z. Regionalization of Hydrological Modeling for Predicting Streamflow in Ungauged Catchments: A Comprehensive Review. WIREs Water, 8(1), e1487, 2021.
  • Randrianasolo, A., Ramos, M. H., Andréassian, V. Hydrological Ensemble Forecasting at Ungauged Basins: Using Neighbour Catchments for Model Setup and Updating. Adv. Geosci., 29, 1-11, 2011.
  • Merz, R., Blöschl, G. Regionalisation of Catchment Model Parameters. J. Hydrol., 287(1-4), 95-123, 2004.
  • He, Y., Bárdossy, A., Zehe, E. A Review of Regionalisation for Continuous Streamflow Simulation. Hydrol. Earth Syst. Sci., 15(11), 3539-3553, 2011.
  • Zhang, Y., Chiew, F. H., Li, M., Post, D. Predicting Runoff Signatures Using Regression and Hydrological Modeling Approaches. Water Resour. Res., 54(10), 7859-7878, 2018.
  • Hailegeorgis, T. T., Thorolfsson, S. T., Alfredsen, K. Regional Frequency Analysis of Extreme Precipitation with Consideration of Uncertainties to Update IDF Curves for the City of Trondheim. J. Hydrol., 498, 305-318, 2013.
  • Wang, Z., Zeng, Z., Lai, C., Lin, W., Wu, X., Chen, X. A Regional Frequency Analysis of Precipitation Extremes in Mainland China with Fuzzy C‐means and L‐moments Approaches. Int. J. Climatol., 37, 429-444, 2017.
  • Betül, S. A. F. Batı Akdeniz Bölgesi Taşkın Tahminlerinde Homojenlik İrdelemesi. Tek. Der., 22(109), 5587-5611,2011.
  • Fırat, M., Dikbaş, F., Koç, A. C., ve Güngör, M. Classification of Annual Precipitations and Identification of Homogeneous Regions Using K-means Method. Tek. Der., 23(115), 1609-1622, 2012.
  • Hosking. J.R.M., Wallis. J.R. Regional Frequency Analysis: An Approach Based on L-moments. New York. Cambridge University Press, 2005.
  • Rao, A. R., Srinivas, V. V. Regionalization of Watersheds by Hybrid-cluster Analysis, J. Hydrol., 318(1-4), 37-56, 2006.
  • Clarke. J. J. Morphometry from Map. Essays in Geomorphology, New York. Elsevier, 1966.
  • Soni, S. Assessment of Morphometric Characteristics of Chakrar Watershed in Madhya Pradesh India Using Geospatial Technique. Appl. Water Sci., 7(5), 2089-2102, 2017.
  • Rekha, B. V., George, A. V., Rita, M. Morphometric Analysis and Micro-watershed Prioritization of Peruvanthanam Sub-watershed, the Manimala River Basin, Kerala, South India. Environ. Res. Eng. Manag., 57(3), 6-14, 2011.
  • Prasannakumar, V., Vijith, H., Geetha, N. Terrain Evaluation Through the Assessment of Geomorphometric Parameters Using DEM and GIS: Case Study of Two Major Sub-watersheds in Attapady, South India. Arab. J. Geosci., 6(4), 1141-1151, 2013.
  • Türker, U., Hansen, B. R. River Basin Management and Characterization of Water Bodies in North Cyprus. In 10th International Congress on Advances in Civil Engineering, Ankara, Türkiye, 2012.
  • Nikolakis, D. A Statistical Study of Precipitation in Cyprus, Hell. J. Geosci., 43, 67-74, 2008.
  • Zaifoglu, H., Akintug, B., Yanmaz, A. M. Regional Frequency Analysis of Precipitation Using Time Series Clustering Approaches. J. Hydrol. Eng., 23(6), 05018007, 2018.
  • Camera, C., Bruggeman, A., Hadjinicolaou, P., Pashiardis, S., Lange, M. A. Evaluation of Interpolation Techniques for the Creation of Gridded Daily Precipitation (1×1 km2); Cyprus, 1980–2010. J. Geophys. Res. Atmos., 119(2), 693-712, 2014.
  • Christofi, C., Bruggeman, A., Kuells, C., Constantinou, C. Hydrochemical Evolution of Groundwater in Gabbro of the Troodos Fractured Aquifer. A Comprehensive Approach. Appl. Geochemistry, 114, 104524, 2020.
  • Djokic, D., Ye, Z., Dartiguenave, C. Archydro Tools Overview Version 2.0, California. Esri, 2011.
  • Horton, R. E. Erosional Development of Streams and Their Drainage Basins; Hydrophysical Approach to Quantitative Morphology. Geol. Soc. Am. Bull., 56(3), 275-370, 1945.
  • Strahler, A. N. Part II. Quantitative Geomorphology of Drainage Basins and Channel Networks. Handbook of Applied Hydrology, New York. McGraw-Hill, 1964.
  • Schumm, S. A. Evolution of Drainage Systems and Slopes in Badlands at Perth Amboy, New Jersey. Geol. Soc. Am. Bull., 67(5), 597-646, 1956.
  • Magesh, N. S., Chandrasekar, N., Soundranayagam, J. P. Morphometric Evaluation of Papanasam and Manimuthar Watersheds, Parts of Western Ghats, Tirunelveli District, Tamil Nadu, India: A GIS Approach. Environ. Earth Sci., 64(2), 373-381, 2011.
  • Ward, J. H. Hierarchical Grouping to Optimize An Objective Function. J. Am. Stat. Assoc., 58(301), 236-244, 1963.
  • MacQueen, J. Classification and Analysis of Multivariate Observations. 5th Berkeley Symposium on Mathematical Statististics and Probability. California, 1967.
  • Chen, B., Tai, P. C., Harrison, R., Pan, Y. Novel Hybrid Hierarchical-K-means Clustering Method (HK-means) for Microarray Analysis. 2005 IEEE Computational Systems Bioinformatics Conference-Workshops. California. 2005.
  • Everitt, B.S., Dunn G., Applied Multivariate Analysis, London. Edward Arnold, 1991.
  • Theodoridis S., Koutroubas K. Pattern Recognition. 4th edition. Academic Press, 2008.
  • Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in A Data Set. J. Stat. Softw., 61, 1-36, 2014.
  • Rao, A. R., Srinivas, V. V. Regionalization of Watersheds: An Approach Based on Cluster Analysis, Berlin. Springer Science and Business Media, 2008.
  • Ralambondrainy, H. A Conceptual Version of the K-means Algorithm. Pattern Recognit. Lett., 16(11), 1147-1157, 1995.
  • Rao, A. R., Srinivas, V. V. Regionalization of Watersheds by Hybrid-Cluster Analysis. J. Hydrol., 318(1-4), 37-56, 2006.
  • Smith, A., Sampson, C., Bates, P. Regional Flood Frequency Analysis at the Global Scale. Wat. Resour. Res., 51(1), 539-553, 2015.
  • Kebebew, A. S., Awass, A. A. Regionalization of Catchments for Flood Frequency Analysis for Data Scarce Rift Valley Lakes Basin, Ethiopia. J. Hydrol. Reg. Stud., 43, 101187, 2022.
  • Strahler, A. N. Quantitative Analysis of Watershed Geomorphology. Eos, Trans. Am. Geophys. Union, 38(6), 913-920, 1957.
  • Chopra, R., Dhiman, R. D., Sharma, P. K. Morphometric Analysis of Sub-watersheds in Gurdaspur District, Punjab Using Rremote Sensing and GIS Techniques. J. Indian Soc. Remote Sens., 33(4), 531-539, 2005.
  • Melton, M. A. (1957). An Analysis of the Relations Among Elements of Climate, Surface Properties, and Geomorphology, New York. Columbia University, 1957.
  • Smith, K. G. Standards for grading texture of erosional topography. Am. J. Sci., 248(9), 655-668, 1950.
  • Biswas, S., Sudhakar, S., Desai, V. R. Prioritisation of Subwatersheds Based on Morphometric Analysis of Drainage Basin: A Remote Sensing and GIS Approach. J. Indian Soc. Remote Sens., 27(3), 155-166, 1999.
  • Morisawa, M. E. (1962). Quantitative Geomorphology of Some Watersheds in the Appalachian Plateau. Geol. Soc. Am. Bull., 73(9), 1025-1046, 1962.
  • Kumar, A., Darmora, A., Sharma, S. Comparative Assessment of Hydrologic Behaviour of Two Mountainous Watersheds Using Morphometric Analysis. Hydrology Journal, 35(3-4), 76-87, 2012.
  • Bogale, A. Morphometric Analysis of A Drainage Basin Using Geographical Information System in Gilgel Abay Watershed, Lake Tana Basin, Upper Blue Nile Basin, Ethiopia. Appl. Water Sci., 11(7), 1-7, 2021.
  • Usul, N. Mühendislik Hidrolojisi, Ankara. ODTÜ Yayıncılık, 2013.
  • Chorley RJ (1969) The Drainage Basin As The Fundamental Feomorphic Unit, London. Methuen Co. Ltd, 1969.

Kuzey Kıbrıs’taki Havzaların Morfometrik Parametreler Kullanılarak Kümelenmesi

Year 2023, , 31 - 54, 01.09.2023
https://doi.org/10.18400/tjce.1312155

Abstract

Hidrolojik açıdan birbirine benzer havzaların sınıflandırılması özellikle bilginin ölçüm yapılmış havzalardan ölçüm yapılmamış havzalara taşınması açısından önemlidir. Bu çalışmada Kuzey Kıbrıs’ta yer alan havzalar bir takım temel, çizgisel, alansal ve rölyef morfometrik havza özellikleri göz önüne alınarak hibrid hiyerarşik k-ortalamalar kümeleme yöntemi ile beş farklı kümede sınıflandırılmışlardır. Coğrafi bilgi sistemleri (CBS) kullanılarak elde edilen bu morfometrik parametreler ile havzaların ve oluşturulan havza kümelerinin hidrolojik ve morfolojik özellikleri detaylı bir şekilde incelenmiştir. Elde edilen sonuçlara göre havzaların büyük çoğunluğunda ana akarsu kollarının orta dereceli akarsulardan oluştuğu ve sadece Küme 1 içerisinde yer alan havzalar ile bazı Küme 4 havzalarının nehir olarak tanımlanabilecek ana akarsu kolları olduğu belirlenmiştir. Havzaların büyük çoğunluğunda ise iyi gelişmiş drenaj ağı ile düşük drenaj yoğunluklarının olduğu saptanmıştır. Ayrıca Küme 1 ve 3 içerisinde yer alan havzaların yüksek havza rölyef özellikleri ile taşkınlar gibi doğal afetlere karşı daha yatkın oldukları belirlenmiştir.

References

  • Papageorgaki, I., Nalbantis, I., Classification of Drainage Basins Based on Readily Available Information. Water Resour. Manag., 30(15), 5559-5574, 2016.
  • Hrachowitz, M., Savenije, H. H. G., Blöschl, G., McDonnell, J. J., Sivapalan, M., Pomeroy, J. W., ... Cudennec, C. A decade of Predictions in Ungauged Basins (PUB)-A review. Hydrol. Sci. J, 58(6), 1198-1255, 2013.
  • Guo, Y., Zhang, Y., Zhang, L., Wang, Z. Regionalization of Hydrological Modeling for Predicting Streamflow in Ungauged Catchments: A Comprehensive Review. WIREs Water, 8(1), e1487, 2021.
  • Randrianasolo, A., Ramos, M. H., Andréassian, V. Hydrological Ensemble Forecasting at Ungauged Basins: Using Neighbour Catchments for Model Setup and Updating. Adv. Geosci., 29, 1-11, 2011.
  • Merz, R., Blöschl, G. Regionalisation of Catchment Model Parameters. J. Hydrol., 287(1-4), 95-123, 2004.
  • He, Y., Bárdossy, A., Zehe, E. A Review of Regionalisation for Continuous Streamflow Simulation. Hydrol. Earth Syst. Sci., 15(11), 3539-3553, 2011.
  • Zhang, Y., Chiew, F. H., Li, M., Post, D. Predicting Runoff Signatures Using Regression and Hydrological Modeling Approaches. Water Resour. Res., 54(10), 7859-7878, 2018.
  • Hailegeorgis, T. T., Thorolfsson, S. T., Alfredsen, K. Regional Frequency Analysis of Extreme Precipitation with Consideration of Uncertainties to Update IDF Curves for the City of Trondheim. J. Hydrol., 498, 305-318, 2013.
  • Wang, Z., Zeng, Z., Lai, C., Lin, W., Wu, X., Chen, X. A Regional Frequency Analysis of Precipitation Extremes in Mainland China with Fuzzy C‐means and L‐moments Approaches. Int. J. Climatol., 37, 429-444, 2017.
  • Betül, S. A. F. Batı Akdeniz Bölgesi Taşkın Tahminlerinde Homojenlik İrdelemesi. Tek. Der., 22(109), 5587-5611,2011.
  • Fırat, M., Dikbaş, F., Koç, A. C., ve Güngör, M. Classification of Annual Precipitations and Identification of Homogeneous Regions Using K-means Method. Tek. Der., 23(115), 1609-1622, 2012.
  • Hosking. J.R.M., Wallis. J.R. Regional Frequency Analysis: An Approach Based on L-moments. New York. Cambridge University Press, 2005.
  • Rao, A. R., Srinivas, V. V. Regionalization of Watersheds by Hybrid-cluster Analysis, J. Hydrol., 318(1-4), 37-56, 2006.
  • Clarke. J. J. Morphometry from Map. Essays in Geomorphology, New York. Elsevier, 1966.
  • Soni, S. Assessment of Morphometric Characteristics of Chakrar Watershed in Madhya Pradesh India Using Geospatial Technique. Appl. Water Sci., 7(5), 2089-2102, 2017.
  • Rekha, B. V., George, A. V., Rita, M. Morphometric Analysis and Micro-watershed Prioritization of Peruvanthanam Sub-watershed, the Manimala River Basin, Kerala, South India. Environ. Res. Eng. Manag., 57(3), 6-14, 2011.
  • Prasannakumar, V., Vijith, H., Geetha, N. Terrain Evaluation Through the Assessment of Geomorphometric Parameters Using DEM and GIS: Case Study of Two Major Sub-watersheds in Attapady, South India. Arab. J. Geosci., 6(4), 1141-1151, 2013.
  • Türker, U., Hansen, B. R. River Basin Management and Characterization of Water Bodies in North Cyprus. In 10th International Congress on Advances in Civil Engineering, Ankara, Türkiye, 2012.
  • Nikolakis, D. A Statistical Study of Precipitation in Cyprus, Hell. J. Geosci., 43, 67-74, 2008.
  • Zaifoglu, H., Akintug, B., Yanmaz, A. M. Regional Frequency Analysis of Precipitation Using Time Series Clustering Approaches. J. Hydrol. Eng., 23(6), 05018007, 2018.
  • Camera, C., Bruggeman, A., Hadjinicolaou, P., Pashiardis, S., Lange, M. A. Evaluation of Interpolation Techniques for the Creation of Gridded Daily Precipitation (1×1 km2); Cyprus, 1980–2010. J. Geophys. Res. Atmos., 119(2), 693-712, 2014.
  • Christofi, C., Bruggeman, A., Kuells, C., Constantinou, C. Hydrochemical Evolution of Groundwater in Gabbro of the Troodos Fractured Aquifer. A Comprehensive Approach. Appl. Geochemistry, 114, 104524, 2020.
  • Djokic, D., Ye, Z., Dartiguenave, C. Archydro Tools Overview Version 2.0, California. Esri, 2011.
  • Horton, R. E. Erosional Development of Streams and Their Drainage Basins; Hydrophysical Approach to Quantitative Morphology. Geol. Soc. Am. Bull., 56(3), 275-370, 1945.
  • Strahler, A. N. Part II. Quantitative Geomorphology of Drainage Basins and Channel Networks. Handbook of Applied Hydrology, New York. McGraw-Hill, 1964.
  • Schumm, S. A. Evolution of Drainage Systems and Slopes in Badlands at Perth Amboy, New Jersey. Geol. Soc. Am. Bull., 67(5), 597-646, 1956.
  • Magesh, N. S., Chandrasekar, N., Soundranayagam, J. P. Morphometric Evaluation of Papanasam and Manimuthar Watersheds, Parts of Western Ghats, Tirunelveli District, Tamil Nadu, India: A GIS Approach. Environ. Earth Sci., 64(2), 373-381, 2011.
  • Ward, J. H. Hierarchical Grouping to Optimize An Objective Function. J. Am. Stat. Assoc., 58(301), 236-244, 1963.
  • MacQueen, J. Classification and Analysis of Multivariate Observations. 5th Berkeley Symposium on Mathematical Statististics and Probability. California, 1967.
  • Chen, B., Tai, P. C., Harrison, R., Pan, Y. Novel Hybrid Hierarchical-K-means Clustering Method (HK-means) for Microarray Analysis. 2005 IEEE Computational Systems Bioinformatics Conference-Workshops. California. 2005.
  • Everitt, B.S., Dunn G., Applied Multivariate Analysis, London. Edward Arnold, 1991.
  • Theodoridis S., Koutroubas K. Pattern Recognition. 4th edition. Academic Press, 2008.
  • Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in A Data Set. J. Stat. Softw., 61, 1-36, 2014.
  • Rao, A. R., Srinivas, V. V. Regionalization of Watersheds: An Approach Based on Cluster Analysis, Berlin. Springer Science and Business Media, 2008.
  • Ralambondrainy, H. A Conceptual Version of the K-means Algorithm. Pattern Recognit. Lett., 16(11), 1147-1157, 1995.
  • Rao, A. R., Srinivas, V. V. Regionalization of Watersheds by Hybrid-Cluster Analysis. J. Hydrol., 318(1-4), 37-56, 2006.
  • Smith, A., Sampson, C., Bates, P. Regional Flood Frequency Analysis at the Global Scale. Wat. Resour. Res., 51(1), 539-553, 2015.
  • Kebebew, A. S., Awass, A. A. Regionalization of Catchments for Flood Frequency Analysis for Data Scarce Rift Valley Lakes Basin, Ethiopia. J. Hydrol. Reg. Stud., 43, 101187, 2022.
  • Strahler, A. N. Quantitative Analysis of Watershed Geomorphology. Eos, Trans. Am. Geophys. Union, 38(6), 913-920, 1957.
  • Chopra, R., Dhiman, R. D., Sharma, P. K. Morphometric Analysis of Sub-watersheds in Gurdaspur District, Punjab Using Rremote Sensing and GIS Techniques. J. Indian Soc. Remote Sens., 33(4), 531-539, 2005.
  • Melton, M. A. (1957). An Analysis of the Relations Among Elements of Climate, Surface Properties, and Geomorphology, New York. Columbia University, 1957.
  • Smith, K. G. Standards for grading texture of erosional topography. Am. J. Sci., 248(9), 655-668, 1950.
  • Biswas, S., Sudhakar, S., Desai, V. R. Prioritisation of Subwatersheds Based on Morphometric Analysis of Drainage Basin: A Remote Sensing and GIS Approach. J. Indian Soc. Remote Sens., 27(3), 155-166, 1999.
  • Morisawa, M. E. (1962). Quantitative Geomorphology of Some Watersheds in the Appalachian Plateau. Geol. Soc. Am. Bull., 73(9), 1025-1046, 1962.
  • Kumar, A., Darmora, A., Sharma, S. Comparative Assessment of Hydrologic Behaviour of Two Mountainous Watersheds Using Morphometric Analysis. Hydrology Journal, 35(3-4), 76-87, 2012.
  • Bogale, A. Morphometric Analysis of A Drainage Basin Using Geographical Information System in Gilgel Abay Watershed, Lake Tana Basin, Upper Blue Nile Basin, Ethiopia. Appl. Water Sci., 11(7), 1-7, 2021.
  • Usul, N. Mühendislik Hidrolojisi, Ankara. ODTÜ Yayıncılık, 2013.
  • Chorley RJ (1969) The Drainage Basin As The Fundamental Feomorphic Unit, London. Methuen Co. Ltd, 1969.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Hydromechanics
Journal Section Research Articles
Authors

Hasan Zaifoğlu 0000-0003-2615-5097

Early Pub Date June 9, 2023
Publication Date September 1, 2023
Submission Date October 30, 2022
Published in Issue Year 2023

Cite

APA Zaifoğlu, H. (2023). Kuzey Kıbrıs’taki Havzaların Morfometrik Parametreler Kullanılarak Kümelenmesi. Turkish Journal of Civil Engineering, 34(5), 31-54. https://doi.org/10.18400/tjce.1312155
AMA Zaifoğlu H. Kuzey Kıbrıs’taki Havzaların Morfometrik Parametreler Kullanılarak Kümelenmesi. tjce. September 2023;34(5):31-54. doi:10.18400/tjce.1312155
Chicago Zaifoğlu, Hasan. “Kuzey Kıbrıs’taki Havzaların Morfometrik Parametreler Kullanılarak Kümelenmesi”. Turkish Journal of Civil Engineering 34, no. 5 (September 2023): 31-54. https://doi.org/10.18400/tjce.1312155.
EndNote Zaifoğlu H (September 1, 2023) Kuzey Kıbrıs’taki Havzaların Morfometrik Parametreler Kullanılarak Kümelenmesi. Turkish Journal of Civil Engineering 34 5 31–54.
IEEE H. Zaifoğlu, “Kuzey Kıbrıs’taki Havzaların Morfometrik Parametreler Kullanılarak Kümelenmesi”, tjce, vol. 34, no. 5, pp. 31–54, 2023, doi: 10.18400/tjce.1312155.
ISNAD Zaifoğlu, Hasan. “Kuzey Kıbrıs’taki Havzaların Morfometrik Parametreler Kullanılarak Kümelenmesi”. Turkish Journal of Civil Engineering 34/5 (September 2023), 31-54. https://doi.org/10.18400/tjce.1312155.
JAMA Zaifoğlu H. Kuzey Kıbrıs’taki Havzaların Morfometrik Parametreler Kullanılarak Kümelenmesi. tjce. 2023;34:31–54.
MLA Zaifoğlu, Hasan. “Kuzey Kıbrıs’taki Havzaların Morfometrik Parametreler Kullanılarak Kümelenmesi”. Turkish Journal of Civil Engineering, vol. 34, no. 5, 2023, pp. 31-54, doi:10.18400/tjce.1312155.
Vancouver Zaifoğlu H. Kuzey Kıbrıs’taki Havzaların Morfometrik Parametreler Kullanılarak Kümelenmesi. tjce. 2023;34(5):31-54.