Research Article
BibTex RIS Cite

Effects of Pore Fluid and Surface Roughness on Geomembrane - Soil Interface Behavior

Year 2023, Volume: 34 Issue: 2, 35 - 56, 01.03.2023
https://doi.org/10.18400/tjce.1224424

Abstract

In this study, direct shear tests were conducted on soil - geomembrane interfaces. Sand/bentonite mixture and crushed sand were tested in contact with two geomembranes of the same type. To examine the effect of leachate on the mechanical properties of the geomembrane, acidic mine drainage, coal combustion product, and municipal solid waste leachates were prepared in the laboratory. The initial void ratio and internal friction angles of sand/bentonite and crushed sand were 0.34, 0.52, and 23⁰, 35⁰, respectively. In the smooth geomembrane - soil interface, the minimum interface friction angle (18⁰) was obtained on acidic mine drainage cured geomembrane – sand/bentonite, while the maximum (31⁰) interface friction angle was obtained on uncured geomembrane - crushed sand. In the textured geomembrane - soil interface, the minimum interface friction angle (17⁰) was obtained on acidic mine drainage cured geomembrane – sand/bentonite, while the maximum (43⁰) interface friction angle was obtained on uncured geomembrane - crushed sand. The friction angle of the crushed sand - geomembrane surface is higher than the friction angle of the sand/bentonite - geomembrane surface. While acidic mine drainage is the leachate that affects the shearing behavior of the geomembrane in the most negative way, coal combustion product is the leachate that has the least negative impact.

References

  • Bonnour, H., Barral, C., Touze-Foltz, N. Altered geosynthetic clay liners: effect on the hydraulic performance of composite liners. Europ. J.. Environ. Civ. Eng., 19(9), 1155 – 1176, 2015. https://doi.org/10.1080/19648189.2015.1005161.
  • Sabiri ,N.E., Caylet, A., Montillet, A., Le Coq, L., Durkheim, Y. Performance of nonwoven geotextiles on soil drainage and filtration. Europ. J.. Environ. Civ. Eng., 24(5), 670 – 688, 2020. https://doi.org/10.1080/19648189.2017.1415982.
  • Chen, W., Xu, T., Zhou, W. Microanalysis of smooth Geomembrane–Sand interface using FDM–DEM coupling simulation” Geotext. Geomembr., 49, 276 – 288, 2021. https://doi.org/10.1016/j.geotexmem.2020.10.022.
  • Pivato, A. Landfill Liner Failure: An Open Question for Landfill Risk Analysis. J. Environ. Protect., 2, 287 – 297, 2017. https://doi.org/10.4236/jep.2011.23032.
  • Koda, E., Grzyb, M., Osiński, P., Vaverková, M.D. Analysis of failure in landfill and Hydraulic Properties of Three Geosynthetics. J. Geotech. Geoenviron. Eng., 131(8), 937 – 950, 2019.
  • Pulat, H.F., Yukselen-Aksoy, Y. Compaction behavior of synthetic and natural MSW samples in different compositions. Waste. Manag. Res.: J. Sustain. Circ. Econo, 31(12), 1255 – 1261, 2013. https://doi.org/10.1177/0734242X13507967.
  • Pulat, H.F., Yukselen-Aksoy, Y. Factors affecting the shear strength behavior of municipal solid wastes. Waste. Manag., 69, 215 – 224, 2017. https://doi.org/10.1016/j.wasman.2017.08.030.
  • Pulat, H.F., Yukselen-Aksoy, Y. Compressibility and shear strength behaviour of fresh and aged municipal solid wastes. Environ. Geotech., 9(1), 55 – 63, 2022. https://doi.org/10.1680/jenge.18.00019.
  • Feng, S.J., Cheng, D. Shear strength between soil/geomembrane and geotextile/geomembrane interfaces. Tunneling and Underground Construction, Shanghai, China, 26 – 28 May, 558 – 569, 2014.
  • Oren, A.H., Ozturk, M., Ozdamar Kul, T., Nart, Z. Barrier performance of geosynthetic clay liners to copper (II) chloride solutions. Environ. Geotech., 7(7), 491 – 500, 2020. https://doi.org/10.1680/jenge.18.00024.
  • Zhou, L., Zhu, Z., Yu, Z., Zhang, C. Shear Testing of the Interfacial Friction Between an HDPE Geomembrane and Solid Waste. Mater., 13, 1 – 16, 2020. https://doi.org/10.3390/ma13071672.
  • Ghazizadeh, S., Bareither, C. A. Failure mechanism of geosynthetics clay liner and textured geomembrane composite systems. Geotext. Geomembr., 49, 789 – 803, 2021. https://doi.org/10.1016/j.geotexmem.2020.12.009.
  • Seed, R. B., Mitchell, J. K., Seed, H. B. Slope Stability Failure Investigation: Kettleman Hills Repository Landfill Unit B-19, Phase IA. Berkeley, California: University of California, 1988.
  • Brachman, R. W. I., Sabir, A. Geomembrane puncture and strains from stones in an underlying clay layer. Geotext. Geomembr., 28(4), 335-343, 2010.
  • Noval, A. M., Blanco, M., Castillo, F., Leiro, A., Mateo, B., Zornberg, J. G., Aguiar, E., Torregrosa, J. B., Redon, M. Long-term Performance of the HDPE Geomembrane at the “San Isidro” Reservoir. In Proc. 10th Int. Conf. Geosynth., Berlin, Germany, 2014.
  • Lambert, S., Touze-Foltz, N. A test for measuring permeability of geomembranes. In Proc. 2nd Europ. Geosynth. Conf., Berlin, Germany, 2000.
  • Das B. M. 2007. Principles of foundation engineering. Sixth edition. Canada: Thomson, 1997.
  • Effendi, R. Interface friction of smooth geomembranes and Ottawa sand. Info Teknik, 12 (1), 61 – 72, 2011.
  • Punetha, P., Mohanty, P., Samanta, M. Microstructural investigation on mechanical behavior of soil – geosynthetic interface in direct shear test. Geotext. Geomembr., 45, 197 – 210, 2017. https://doi.org/10.1016/j.geotexmem.2017.02.001.
  • Chai, J. C., Saito, A. Interface shear strengths between geosynthetics and clayey soils. Int. J. Geosyn. Groun. Eng., 2 (19), 3 – 9, 2016. https://doi.org/10.1007/s40891-016-0060-8.
  • Stark, T. D., Santoyo, R. F. Soil/Geosynthetic Interface Strengths from Torsional Ring Shear Tests. In Proc. Geotech. Front., Orlando, Florida, 2017.
  • Abdelaal, F., Rowe, R. K., Brachman, R. W. I. Brittle rupture of an aged HDPE geomembrane at local gravel indentation under simulated field conditions. Geosynt. Int., 21(1), 2014. https://doi.org/ 10.1680/gein.13.00031.
  • Gulec, B. S., Benson, C. H., Edil, T. B. Effect of Acidic Mine Drainage on the Mechanical construction elements. MATEC Web of Conferences, 284, 2005. https://doi.org/10.1051/matecconf.
  • Mitchell, J. K., Seed, R. B., Seed, H. B. Kettleman Hills waste landfill slope failure. I: Liner-System Properties. J. Geotech. Eng., 116 (4): 647 – 668, 1990. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:4(647).
  • Grubb, D., Cheng, S., Diesing, W. High altitude exposure testing of geotextiles in the Peruvian Andes. Geosynthet. Int., 6(2), 119 – 144, 1999.
  • Ozdamar Kul, T., Oren, A.H. Geosentetik Kil Örtü Hidrasyon Yönteminin Alt Zemin Koşullarına Bağlı Olarak Değerlendirilmesi. Tek. Der., 504, 8385 – 8409, 2018. https://doi.org/10.18400/tekderg.378245.
  • Polat, F., Ozdamar Kul, T., Oren, A.H. Influence of Mass Per Unit Area on the Hydraulic Conductivity of Geosynthetic Clay Liners (GCLs). Eur. J. Sci. Tech., 28, 1269 – 1273, 2021. https://doi.org/10.31590/ejosat.1013103.
  • Hrapovic, L. Laboratory Study of Intrinsic Degradation of Organic Pollutants in Compacted Clayey Soil. PhD thesis, The University of Western Ontario, 300, 2001.
  • Rowe, R. K. Rimal, S. Aging of HDPE Geomembrane in Three Composite Landfill Liner Configurations. J. Geotech. Geoenviron. Eng., 134(7), 906 – 916, 2008.
  • Benson, C., Chen, J., Likos, W., Edil, T. Hydraulic Conductivity of Compacted Soil Liners Permeated with Coal Combustion Product Leachates. J. Geotech. Geoenviron. Eng., 144(4), 2018.
  • Rowe, R.K., Rimal, S., Sangam, H. Ageing of HDPE geomembrane exposed to air, water and leachate at different temperatures. Geotext. Geomembr., 27(2), 137 – 151, 2009. https://doi.org/10.1016/j.geotexmem.2008.09.007.
  • Xie, H., Lou, Z., Chen, Y., Jin, A., Zhan, T.L., Tang, X. An analytical solution to organic contaminant diffusion through composite liners considering the effect of degradation. Geotext. Geomembr., 36, 10 – 18, 2013. https://doi.org/10.1016/j.geotexmem.2012.10.007.
  • Gulec, S. Effect of acid mine drainage on the properties of geosynthetics.” PhD dissertation, Univ. of Wisconsin-Madison., Madison, Wis, 2003.
  • Rowe, R. K., Islam, M. Z., Hsuan, Y. G. Effects of Thickness on the Aging of HDPE Geomembranes. J. Geotech. Geoenviron. Eng., 136 (2): 299-309, 2010. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000207.
  • Maisonneuve, C., Person, P., Duquenno, C., Morin A. Accelerated aging tests for geomembranes used in landfills. Sixth International Landfill Symposium, 207 – 216, 1997.
  • ASTM (American Society for Testing and Materials). 2011. Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. ASTM D 3080/3080M – 11. West Conshohocken, PA: ASTM.
  • Dadkhah, R., Ghafoori, M., Ajalloeian, R., Lashkaripou,r G. R. The effect of scale direct shear test on the strength parameters of clayey sand in Isfahan City, Iran. J. App. Sci., 10 (18), 2027 – 2033, 2010. https://doi.org/10.3923/jas.2010.2027.2033.
  • Sobol, E., Sas, W., Szymanski, A. Scale effect in direct shear tests on recycled concrete aggregate. Stud. Geotech. Mech., 37 (2), 45 – 49, 2015. https://doi.org/10.1515/sgem-2015-0019.
  • Mohapatra, S. R., Mishra, S. R., Nithin, S., Rajagobal, K. Effect of Box Size on Dilative Behaviour of Sand in Direct Shear Test. In Proc. Ind. Geotech. Conf., 16, 111 – 118: Chennai, India, 2016. https://doi.org/10.1007/978-981-13-0899-4_14.
  • Zahran, K., El Naggar, H. Effect of Sample Size on TDA Shear Strength Parameters in Direct Shear Tests. Trans. Res. Rec., 2674 (9), 1110 – 1119, 2020. https://doi.org/10.1177/0361198120934482.
  • ASTM (American Society for Testing and Materials). 2020. Standard Test Method for Determining the Shear Strength of Soil – Geosynthetic and Geosynthetic – Geosynthetic Interfaces by Direct Shear. ASTM D 5321/5321M – 20. West Conshohocken, PA: ASTM.
  • Shi, J., Shu, S., Qian, X., Wang, Y. Shear strength of landfill liner interface in the case of varying normal stress. Geotext. Geomembr., 48, 713 – 723, 2020. https://doi.org/10.1016/j.geotexmem.2020.05.004.
  • Koerner, R. M., Martin, J. P., Koerner, G. R. Shear strength parameters between geomembranes and cohesive soils. Geotext. Geomembr., 4(1), 21 – 30, 1986. https://doi.org/10.1016/0266-1144(86)90034-8.
  • Gokhale, A. M. Underwood, E. E. A General Method for Estimation of Fracture Surface Roughness: Part 1. Theoretical Aspects. Metal. Trans. A, 21A, 1193 – 1199, 1990.
  • Gokhale, A. M. Drury, W. J. A General Method for Estimation of Fracture Surface Roughness: Part II. Practical Considerations. Metal. Trans. A., 21A, 1201 – 1207, 1990.
  • Vangla, P., Gali, M. L. Shear behavior of sand – smooth geomembrane interfaces through micro – topographical analysis. Geotext. Geomembr., 44, 592 – 603, 2016. https://doi.org/10.1016/j.geotexmem.2016.04.001.
  • Marcotte, B. A., Fleming, I. R. Direct measurement of geomembrane strain from aggregate indentations. Geosynt. Int., 0 (0), 1 – 54, 2021. https://doi.org/10.1680/jgein.21.00027.
  • Liu, F., Ying, M., Yuan, G., Wang, J., Gao, Z., Ni, J. Particle shape effects on cyclic shear behaviour of the soil-geogrid interface. Geotext. Geomembr., 49, 991 – 1003, 2021. https://doi.org/10.1016/j.geotexmem.2021.01.008.
  • Vaid, Y. P., Rinne, N. Geomembrane coefficients of interface friction. Geosynt. Int., 2(1), 309 – 325, 1995.
  • Monteiro, C. B., Araújo, G. L. S., Palmeira, E. M., Cordão Neto, M. P. Soil-geosynthetic interface strength on smooth and texturized geomembranes under different test conditions. In Proc. Int. Conf. Soil Mech. Geotech. Eng., 3053 – 3056, Paris, France, 2013.
  • Adeleke D., Kalumba D., Nolutshungu L., Oriokot J., Martinez A. The Influence of Asperities and Surface Roughness on Geomembrane/Geotextile Interface Friction Angle. Int. J. Geosynth. Ground Eng., 7(20), 1 – 12, 2021.
  • Zettler, T. E., Frost, J. D., DeJong, J. T. Shear-induced changes in smooth HDPE geomembrane surface topography. Geosynt. Int., 7(3), 243 – 267, 2000. https://doi.org/10.1680/gein.7.0174.
  • Ling, H. I., Pamuk, A., Dechasakulsom, M., Mohri, Y., Burke, C. Interactions between PVC geomembranes and compacted clays. J. Geotech. Geoenviron. Eng., 127, 950 – 954, 2001. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:11(950).
  • Yamsani, S. K., Sreedeep, S., Rakesh, R. R. Frictional and interface frictional characteristics of multi-layer cover system materials and its impact on overall stability. Int. J. Geosynth. Gro. Eng., 2(23), 2 – 9, 2016. https://doi.org/10.1007/s40891-016-0063-5.
  • Esterhuizen, J. J. B., Filz, G. M., Duncan, J. M. Constitutive behavior of geosynthetic interfaces.” J. Geotech. Geoenviron. Eng., 127, 834 – 840, 2001. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(834).
  • Stark, T. D., Niazi, F. S., Keuscher, T. C. Strength envelopes from single and multigeosynthetic interface tests. Geotech. Geo. Eng., 33, 1351 – 1367, 2015. https://doi.org/10.1007/s10706-015-9906-4.
  • Markou, I. N., Evangelou, E. D. Shear Resistance Characteristics of Soil–Geomembrane Interfaces. Int. J. Geosynth. Gro. Eng., 4(29), 1 – 16, 2018. https://doi.org/10.1007/s40891-018-0146-6.
  • Hsuan, Y., Koerner, R. Antioxidant depletion lifetime in high density polyethylene geomembranes. J. Geotech. Geoenviron. Eng., 124(6), 532 – 541, 1998. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(532).
  • Kulshreshtha, A. Chemical degradation. Handbook of polymer degradation, Dekker, New York, 55–95, 1992.
  • Viebke, J., Elble, E., Ifwarson, M., Gedde, U. W. Degradation of unstabilized medium-density polyethylene pipes in hot-water applications. Polymer Eng. Sci., 34(17), 1354 – 1361, 1994. https://doi.org/10.1002/PEN.760341708.
  • Benson, C., Chen, J., Edil, T. Engineering properties of geosynthetic clay liners permeated with coal combustion product leachates. Rep. No. 3002003770, Electric Power Research Institute, Palo Alto, CA, 2014.
  • Salihoglu, H., Chen, J., Likos, W., Benson, C. Hydraulic conductivity of bentonite-polymer geosynthetic clay liners in coal combustion product leachates. Proc., Geo-Chicago 2016: Sustainable Geoenvironmental Systems, ASCE, Reston, VA, 438–448, 2016.
  • Frost, J. D., Kim, D., Lee, S. W. Microscale geomembrane-granular material interactions. KSCE J. Civ. Eng, 16 (1), 79 – 92, 2012. https://doi.org/10.1007/s12205-012-1476-x.
  • Cen, W. J., Wang, H., Fe, Y. J. Laboratory investigation of shear behavior of high – density polyethylene geomembrane interfaces. Polymers, 10, 1 – 14, 2018. https://doi.org/10.3390/polym10070734.
  • Adamska, K. Z. Water content – density criteria for determining geomembrane – fly ash interface shear strength. In Proc. MATEC Web of Conferences, 262, 1 – 8, 2018. https://doi.org/10.1051/matecconf/201926204005.
  • Khilnani, K., Stark, T. D., Bahadori, T. M. Comparison of Single and Multi Layer Interface Strengths for Geosynthetic/Geosynthetic and Soil/Geosynthetic Interfaces. Geotech. Front., 276, 2017. https://doi.org/10.1061/9780784480434.005.
  • Isaev, O. N., Sharafutdinov, R. F. Soil Shear Strength at the Structure Interface. Soil Mech. Found. Eng., 57(2), 139 – 146, 2020.
  • Cen, W. J., Wang, H., Yu, L., Rahman, M. S. Response of High-Density Polyethylene Geomembrane–Sand Interfaces under Cyclic Shear Loading: Laboratory Investigation. Int. J. Geomech., 20(2), 1 – 15, 2020.
  • Cabalar, A. F. Cyclic Behavior of Various Sands and Structural Materials Interfaces. Geomech. Geoeng., 10(1), 1 – 19, 2016.
Year 2023, Volume: 34 Issue: 2, 35 - 56, 01.03.2023
https://doi.org/10.18400/tjce.1224424

Abstract

References

  • Bonnour, H., Barral, C., Touze-Foltz, N. Altered geosynthetic clay liners: effect on the hydraulic performance of composite liners. Europ. J.. Environ. Civ. Eng., 19(9), 1155 – 1176, 2015. https://doi.org/10.1080/19648189.2015.1005161.
  • Sabiri ,N.E., Caylet, A., Montillet, A., Le Coq, L., Durkheim, Y. Performance of nonwoven geotextiles on soil drainage and filtration. Europ. J.. Environ. Civ. Eng., 24(5), 670 – 688, 2020. https://doi.org/10.1080/19648189.2017.1415982.
  • Chen, W., Xu, T., Zhou, W. Microanalysis of smooth Geomembrane–Sand interface using FDM–DEM coupling simulation” Geotext. Geomembr., 49, 276 – 288, 2021. https://doi.org/10.1016/j.geotexmem.2020.10.022.
  • Pivato, A. Landfill Liner Failure: An Open Question for Landfill Risk Analysis. J. Environ. Protect., 2, 287 – 297, 2017. https://doi.org/10.4236/jep.2011.23032.
  • Koda, E., Grzyb, M., Osiński, P., Vaverková, M.D. Analysis of failure in landfill and Hydraulic Properties of Three Geosynthetics. J. Geotech. Geoenviron. Eng., 131(8), 937 – 950, 2019.
  • Pulat, H.F., Yukselen-Aksoy, Y. Compaction behavior of synthetic and natural MSW samples in different compositions. Waste. Manag. Res.: J. Sustain. Circ. Econo, 31(12), 1255 – 1261, 2013. https://doi.org/10.1177/0734242X13507967.
  • Pulat, H.F., Yukselen-Aksoy, Y. Factors affecting the shear strength behavior of municipal solid wastes. Waste. Manag., 69, 215 – 224, 2017. https://doi.org/10.1016/j.wasman.2017.08.030.
  • Pulat, H.F., Yukselen-Aksoy, Y. Compressibility and shear strength behaviour of fresh and aged municipal solid wastes. Environ. Geotech., 9(1), 55 – 63, 2022. https://doi.org/10.1680/jenge.18.00019.
  • Feng, S.J., Cheng, D. Shear strength between soil/geomembrane and geotextile/geomembrane interfaces. Tunneling and Underground Construction, Shanghai, China, 26 – 28 May, 558 – 569, 2014.
  • Oren, A.H., Ozturk, M., Ozdamar Kul, T., Nart, Z. Barrier performance of geosynthetic clay liners to copper (II) chloride solutions. Environ. Geotech., 7(7), 491 – 500, 2020. https://doi.org/10.1680/jenge.18.00024.
  • Zhou, L., Zhu, Z., Yu, Z., Zhang, C. Shear Testing of the Interfacial Friction Between an HDPE Geomembrane and Solid Waste. Mater., 13, 1 – 16, 2020. https://doi.org/10.3390/ma13071672.
  • Ghazizadeh, S., Bareither, C. A. Failure mechanism of geosynthetics clay liner and textured geomembrane composite systems. Geotext. Geomembr., 49, 789 – 803, 2021. https://doi.org/10.1016/j.geotexmem.2020.12.009.
  • Seed, R. B., Mitchell, J. K., Seed, H. B. Slope Stability Failure Investigation: Kettleman Hills Repository Landfill Unit B-19, Phase IA. Berkeley, California: University of California, 1988.
  • Brachman, R. W. I., Sabir, A. Geomembrane puncture and strains from stones in an underlying clay layer. Geotext. Geomembr., 28(4), 335-343, 2010.
  • Noval, A. M., Blanco, M., Castillo, F., Leiro, A., Mateo, B., Zornberg, J. G., Aguiar, E., Torregrosa, J. B., Redon, M. Long-term Performance of the HDPE Geomembrane at the “San Isidro” Reservoir. In Proc. 10th Int. Conf. Geosynth., Berlin, Germany, 2014.
  • Lambert, S., Touze-Foltz, N. A test for measuring permeability of geomembranes. In Proc. 2nd Europ. Geosynth. Conf., Berlin, Germany, 2000.
  • Das B. M. 2007. Principles of foundation engineering. Sixth edition. Canada: Thomson, 1997.
  • Effendi, R. Interface friction of smooth geomembranes and Ottawa sand. Info Teknik, 12 (1), 61 – 72, 2011.
  • Punetha, P., Mohanty, P., Samanta, M. Microstructural investigation on mechanical behavior of soil – geosynthetic interface in direct shear test. Geotext. Geomembr., 45, 197 – 210, 2017. https://doi.org/10.1016/j.geotexmem.2017.02.001.
  • Chai, J. C., Saito, A. Interface shear strengths between geosynthetics and clayey soils. Int. J. Geosyn. Groun. Eng., 2 (19), 3 – 9, 2016. https://doi.org/10.1007/s40891-016-0060-8.
  • Stark, T. D., Santoyo, R. F. Soil/Geosynthetic Interface Strengths from Torsional Ring Shear Tests. In Proc. Geotech. Front., Orlando, Florida, 2017.
  • Abdelaal, F., Rowe, R. K., Brachman, R. W. I. Brittle rupture of an aged HDPE geomembrane at local gravel indentation under simulated field conditions. Geosynt. Int., 21(1), 2014. https://doi.org/ 10.1680/gein.13.00031.
  • Gulec, B. S., Benson, C. H., Edil, T. B. Effect of Acidic Mine Drainage on the Mechanical construction elements. MATEC Web of Conferences, 284, 2005. https://doi.org/10.1051/matecconf.
  • Mitchell, J. K., Seed, R. B., Seed, H. B. Kettleman Hills waste landfill slope failure. I: Liner-System Properties. J. Geotech. Eng., 116 (4): 647 – 668, 1990. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:4(647).
  • Grubb, D., Cheng, S., Diesing, W. High altitude exposure testing of geotextiles in the Peruvian Andes. Geosynthet. Int., 6(2), 119 – 144, 1999.
  • Ozdamar Kul, T., Oren, A.H. Geosentetik Kil Örtü Hidrasyon Yönteminin Alt Zemin Koşullarına Bağlı Olarak Değerlendirilmesi. Tek. Der., 504, 8385 – 8409, 2018. https://doi.org/10.18400/tekderg.378245.
  • Polat, F., Ozdamar Kul, T., Oren, A.H. Influence of Mass Per Unit Area on the Hydraulic Conductivity of Geosynthetic Clay Liners (GCLs). Eur. J. Sci. Tech., 28, 1269 – 1273, 2021. https://doi.org/10.31590/ejosat.1013103.
  • Hrapovic, L. Laboratory Study of Intrinsic Degradation of Organic Pollutants in Compacted Clayey Soil. PhD thesis, The University of Western Ontario, 300, 2001.
  • Rowe, R. K. Rimal, S. Aging of HDPE Geomembrane in Three Composite Landfill Liner Configurations. J. Geotech. Geoenviron. Eng., 134(7), 906 – 916, 2008.
  • Benson, C., Chen, J., Likos, W., Edil, T. Hydraulic Conductivity of Compacted Soil Liners Permeated with Coal Combustion Product Leachates. J. Geotech. Geoenviron. Eng., 144(4), 2018.
  • Rowe, R.K., Rimal, S., Sangam, H. Ageing of HDPE geomembrane exposed to air, water and leachate at different temperatures. Geotext. Geomembr., 27(2), 137 – 151, 2009. https://doi.org/10.1016/j.geotexmem.2008.09.007.
  • Xie, H., Lou, Z., Chen, Y., Jin, A., Zhan, T.L., Tang, X. An analytical solution to organic contaminant diffusion through composite liners considering the effect of degradation. Geotext. Geomembr., 36, 10 – 18, 2013. https://doi.org/10.1016/j.geotexmem.2012.10.007.
  • Gulec, S. Effect of acid mine drainage on the properties of geosynthetics.” PhD dissertation, Univ. of Wisconsin-Madison., Madison, Wis, 2003.
  • Rowe, R. K., Islam, M. Z., Hsuan, Y. G. Effects of Thickness on the Aging of HDPE Geomembranes. J. Geotech. Geoenviron. Eng., 136 (2): 299-309, 2010. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000207.
  • Maisonneuve, C., Person, P., Duquenno, C., Morin A. Accelerated aging tests for geomembranes used in landfills. Sixth International Landfill Symposium, 207 – 216, 1997.
  • ASTM (American Society for Testing and Materials). 2011. Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. ASTM D 3080/3080M – 11. West Conshohocken, PA: ASTM.
  • Dadkhah, R., Ghafoori, M., Ajalloeian, R., Lashkaripou,r G. R. The effect of scale direct shear test on the strength parameters of clayey sand in Isfahan City, Iran. J. App. Sci., 10 (18), 2027 – 2033, 2010. https://doi.org/10.3923/jas.2010.2027.2033.
  • Sobol, E., Sas, W., Szymanski, A. Scale effect in direct shear tests on recycled concrete aggregate. Stud. Geotech. Mech., 37 (2), 45 – 49, 2015. https://doi.org/10.1515/sgem-2015-0019.
  • Mohapatra, S. R., Mishra, S. R., Nithin, S., Rajagobal, K. Effect of Box Size on Dilative Behaviour of Sand in Direct Shear Test. In Proc. Ind. Geotech. Conf., 16, 111 – 118: Chennai, India, 2016. https://doi.org/10.1007/978-981-13-0899-4_14.
  • Zahran, K., El Naggar, H. Effect of Sample Size on TDA Shear Strength Parameters in Direct Shear Tests. Trans. Res. Rec., 2674 (9), 1110 – 1119, 2020. https://doi.org/10.1177/0361198120934482.
  • ASTM (American Society for Testing and Materials). 2020. Standard Test Method for Determining the Shear Strength of Soil – Geosynthetic and Geosynthetic – Geosynthetic Interfaces by Direct Shear. ASTM D 5321/5321M – 20. West Conshohocken, PA: ASTM.
  • Shi, J., Shu, S., Qian, X., Wang, Y. Shear strength of landfill liner interface in the case of varying normal stress. Geotext. Geomembr., 48, 713 – 723, 2020. https://doi.org/10.1016/j.geotexmem.2020.05.004.
  • Koerner, R. M., Martin, J. P., Koerner, G. R. Shear strength parameters between geomembranes and cohesive soils. Geotext. Geomembr., 4(1), 21 – 30, 1986. https://doi.org/10.1016/0266-1144(86)90034-8.
  • Gokhale, A. M. Underwood, E. E. A General Method for Estimation of Fracture Surface Roughness: Part 1. Theoretical Aspects. Metal. Trans. A, 21A, 1193 – 1199, 1990.
  • Gokhale, A. M. Drury, W. J. A General Method for Estimation of Fracture Surface Roughness: Part II. Practical Considerations. Metal. Trans. A., 21A, 1201 – 1207, 1990.
  • Vangla, P., Gali, M. L. Shear behavior of sand – smooth geomembrane interfaces through micro – topographical analysis. Geotext. Geomembr., 44, 592 – 603, 2016. https://doi.org/10.1016/j.geotexmem.2016.04.001.
  • Marcotte, B. A., Fleming, I. R. Direct measurement of geomembrane strain from aggregate indentations. Geosynt. Int., 0 (0), 1 – 54, 2021. https://doi.org/10.1680/jgein.21.00027.
  • Liu, F., Ying, M., Yuan, G., Wang, J., Gao, Z., Ni, J. Particle shape effects on cyclic shear behaviour of the soil-geogrid interface. Geotext. Geomembr., 49, 991 – 1003, 2021. https://doi.org/10.1016/j.geotexmem.2021.01.008.
  • Vaid, Y. P., Rinne, N. Geomembrane coefficients of interface friction. Geosynt. Int., 2(1), 309 – 325, 1995.
  • Monteiro, C. B., Araújo, G. L. S., Palmeira, E. M., Cordão Neto, M. P. Soil-geosynthetic interface strength on smooth and texturized geomembranes under different test conditions. In Proc. Int. Conf. Soil Mech. Geotech. Eng., 3053 – 3056, Paris, France, 2013.
  • Adeleke D., Kalumba D., Nolutshungu L., Oriokot J., Martinez A. The Influence of Asperities and Surface Roughness on Geomembrane/Geotextile Interface Friction Angle. Int. J. Geosynth. Ground Eng., 7(20), 1 – 12, 2021.
  • Zettler, T. E., Frost, J. D., DeJong, J. T. Shear-induced changes in smooth HDPE geomembrane surface topography. Geosynt. Int., 7(3), 243 – 267, 2000. https://doi.org/10.1680/gein.7.0174.
  • Ling, H. I., Pamuk, A., Dechasakulsom, M., Mohri, Y., Burke, C. Interactions between PVC geomembranes and compacted clays. J. Geotech. Geoenviron. Eng., 127, 950 – 954, 2001. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:11(950).
  • Yamsani, S. K., Sreedeep, S., Rakesh, R. R. Frictional and interface frictional characteristics of multi-layer cover system materials and its impact on overall stability. Int. J. Geosynth. Gro. Eng., 2(23), 2 – 9, 2016. https://doi.org/10.1007/s40891-016-0063-5.
  • Esterhuizen, J. J. B., Filz, G. M., Duncan, J. M. Constitutive behavior of geosynthetic interfaces.” J. Geotech. Geoenviron. Eng., 127, 834 – 840, 2001. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(834).
  • Stark, T. D., Niazi, F. S., Keuscher, T. C. Strength envelopes from single and multigeosynthetic interface tests. Geotech. Geo. Eng., 33, 1351 – 1367, 2015. https://doi.org/10.1007/s10706-015-9906-4.
  • Markou, I. N., Evangelou, E. D. Shear Resistance Characteristics of Soil–Geomembrane Interfaces. Int. J. Geosynth. Gro. Eng., 4(29), 1 – 16, 2018. https://doi.org/10.1007/s40891-018-0146-6.
  • Hsuan, Y., Koerner, R. Antioxidant depletion lifetime in high density polyethylene geomembranes. J. Geotech. Geoenviron. Eng., 124(6), 532 – 541, 1998. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(532).
  • Kulshreshtha, A. Chemical degradation. Handbook of polymer degradation, Dekker, New York, 55–95, 1992.
  • Viebke, J., Elble, E., Ifwarson, M., Gedde, U. W. Degradation of unstabilized medium-density polyethylene pipes in hot-water applications. Polymer Eng. Sci., 34(17), 1354 – 1361, 1994. https://doi.org/10.1002/PEN.760341708.
  • Benson, C., Chen, J., Edil, T. Engineering properties of geosynthetic clay liners permeated with coal combustion product leachates. Rep. No. 3002003770, Electric Power Research Institute, Palo Alto, CA, 2014.
  • Salihoglu, H., Chen, J., Likos, W., Benson, C. Hydraulic conductivity of bentonite-polymer geosynthetic clay liners in coal combustion product leachates. Proc., Geo-Chicago 2016: Sustainable Geoenvironmental Systems, ASCE, Reston, VA, 438–448, 2016.
  • Frost, J. D., Kim, D., Lee, S. W. Microscale geomembrane-granular material interactions. KSCE J. Civ. Eng, 16 (1), 79 – 92, 2012. https://doi.org/10.1007/s12205-012-1476-x.
  • Cen, W. J., Wang, H., Fe, Y. J. Laboratory investigation of shear behavior of high – density polyethylene geomembrane interfaces. Polymers, 10, 1 – 14, 2018. https://doi.org/10.3390/polym10070734.
  • Adamska, K. Z. Water content – density criteria for determining geomembrane – fly ash interface shear strength. In Proc. MATEC Web of Conferences, 262, 1 – 8, 2018. https://doi.org/10.1051/matecconf/201926204005.
  • Khilnani, K., Stark, T. D., Bahadori, T. M. Comparison of Single and Multi Layer Interface Strengths for Geosynthetic/Geosynthetic and Soil/Geosynthetic Interfaces. Geotech. Front., 276, 2017. https://doi.org/10.1061/9780784480434.005.
  • Isaev, O. N., Sharafutdinov, R. F. Soil Shear Strength at the Structure Interface. Soil Mech. Found. Eng., 57(2), 139 – 146, 2020.
  • Cen, W. J., Wang, H., Yu, L., Rahman, M. S. Response of High-Density Polyethylene Geomembrane–Sand Interfaces under Cyclic Shear Loading: Laboratory Investigation. Int. J. Geomech., 20(2), 1 – 15, 2020.
  • Cabalar, A. F. Cyclic Behavior of Various Sands and Structural Materials Interfaces. Geomech. Geoeng., 10(1), 1 – 19, 2016.
There are 69 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Inci Develioglu 0000-0001-6594-8095

Hasan Fırat Pulat This is me 0000-0002-8298-7106

Publication Date March 1, 2023
Submission Date May 19, 2022
Published in Issue Year 2023 Volume: 34 Issue: 2

Cite

APA Develioglu, I., & Pulat, H. F. (2023). Effects of Pore Fluid and Surface Roughness on Geomembrane - Soil Interface Behavior. Turkish Journal of Civil Engineering, 34(2), 35-56. https://doi.org/10.18400/tjce.1224424
AMA Develioglu I, Pulat HF. Effects of Pore Fluid and Surface Roughness on Geomembrane - Soil Interface Behavior. TJCE. March 2023;34(2):35-56. doi:10.18400/tjce.1224424
Chicago Develioglu, Inci, and Hasan Fırat Pulat. “Effects of Pore Fluid and Surface Roughness on Geomembrane - Soil Interface Behavior”. Turkish Journal of Civil Engineering 34, no. 2 (March 2023): 35-56. https://doi.org/10.18400/tjce.1224424.
EndNote Develioglu I, Pulat HF (March 1, 2023) Effects of Pore Fluid and Surface Roughness on Geomembrane - Soil Interface Behavior. Turkish Journal of Civil Engineering 34 2 35–56.
IEEE I. Develioglu and H. F. Pulat, “Effects of Pore Fluid and Surface Roughness on Geomembrane - Soil Interface Behavior”, TJCE, vol. 34, no. 2, pp. 35–56, 2023, doi: 10.18400/tjce.1224424.
ISNAD Develioglu, Inci - Pulat, Hasan Fırat. “Effects of Pore Fluid and Surface Roughness on Geomembrane - Soil Interface Behavior”. Turkish Journal of Civil Engineering 34/2 (March 2023), 35-56. https://doi.org/10.18400/tjce.1224424.
JAMA Develioglu I, Pulat HF. Effects of Pore Fluid and Surface Roughness on Geomembrane - Soil Interface Behavior. TJCE. 2023;34:35–56.
MLA Develioglu, Inci and Hasan Fırat Pulat. “Effects of Pore Fluid and Surface Roughness on Geomembrane - Soil Interface Behavior”. Turkish Journal of Civil Engineering, vol. 34, no. 2, 2023, pp. 35-56, doi:10.18400/tjce.1224424.
Vancouver Develioglu I, Pulat HF. Effects of Pore Fluid and Surface Roughness on Geomembrane - Soil Interface Behavior. TJCE. 2023;34(2):35-56.