Research Article
BibTex RIS Cite

Experimental Investigation on Foundation Behaviour and Optimum Pile Spacing in Cohesionless Soil

Year 2023, Volume: 34 Issue: 2, 145 - 172, 01.03.2023
https://doi.org/10.18400/tjce.1244594

Abstract

In this study, 40 model test were conducted with cohesionless soil in two different relative density of 50 % and 85 %. The model tests were categorized into 3 different configurations as only raft, only pile and piled raft foundation. Also the model tests of the piled rafts were configured as shallow and surface. During the tests vertical loads were incrementally applied. The results demonstrate that the optimum pile spacing is smaller in the surface case compared to the shallow case. The study demonstrated experimentally that optimum pile spacing is to be between 1.5D to 4D, for 50 % relative density, whereas the optimum pile spacing for 85 % relative density is 4.5D to 6D.

References

  • Elwakil, A., Azzam, W., Experimental And Numerical Study Of Piled Raft System. Alexandria Engineering Journal. 55. 10.1016/j.aej.2015.10.001, 2015.
  • Hadi, Dheyaa & Fattah, Mohammed & Waheed, Mohanned. Effect of Pile's Number on the Behavior of Piled Raft Foundation. 39. 1080-1091. 10.30684/etj.v39i7.1795 2021.
  • Hamderi, M., Kazıklı Radye Temellerin Oturma Tahmini İçin Yeni Bir Yöntem, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, c. 9, sayı. 2, ss. 881-893, 2018.
  • Hamderi, M., New Approach to Group Pile Load Estimation. International Journal of Geomechanics. 04019013-1. 10.1061/(ASCE)GM.1943-5622.0001374, 2019.
  • Krisnanto, S., Sengara, I., Adelina, F., Advancement of Bearing Capacity and Settlement Analyses of Piled Raft Foundation, Proceeding SEAGC 3rd AGSSEA Conference in conjuction with 22nd Annual Indonesian National Conference on Geotechnical Engineering. Indonesia, 81-84,2018.
  • Kuwabara, F., An Elastic Analysis for Piled Raft Foundations in Homogeneous Soils, Soils and Foundations, Vol. 29, No:1, pp. 82-92, 1989.
  • Sharafkhah, M., Shooshpasha, I., Physical Modeling Of Behaviors Of Cast-In-Place Concrete Piled Raft Compared To Free-Standing Pile Group In Sand. Journal of Rock Mechanics Geotechnical Engineering, 10:703–16 2018, https://doi.org/10.1016/j.jrmge.2017.12.007.
  • Ersoy, Ç. Ö., Yıldırım, S., Experimental Investigation of Piles Behavior Subjected to Lateral Soil Movement. Teknik Dergi 25, 2014.
  • Al-Neami, M., & Rahil, F., A., K., Effect of Relative Density on Behavior of Single Pile and Piles Groups Embedded with Different Lengths in Sand. Engineering Technology. 34. 1206 2015 .
  • Hama, S., Soran S., Nihad, N., D., Optimum design of steel piles in different sandy soil configurations. Geomechanics and Geoengineering. 17. 1-11. 10.1080/17486025.2020.1755461 2020.
  • Babagiray, G., Akbaş, S. O., Sığ Rijit Tabaka Üzerinde Yer Alan Kohezyonsuz Zeminlerdeki Yüzeysel Temellerin Taşıma Gücü Hakkında Sayısal Modelleme Esaslı Parametrik Bir Çalışma. Teknik Dergi 29 8185-8198, 2018.
  • Ateş, B., Şadoglu, Erol., Kum Zeminlerdeki Kazıklı Radye Temellerin Optimum Kazık Aralığının Deneysel Olarak İncelenmesi. Teknik Dergi, 10.18400/tekderg.644885, 2021.
  • Raut, J., Khadeshwar, S., Bajad, S., Kadu, M., Simplified Design Method for Piled Raft Foundations. Geotechnical Special Publication. 462-471. 10.1061/9780784413425.047, 2014.
  • Butterfield, R., and Banerjee, P. K., The Problem of Pile Group-Pile Cap Interaction, Géotechnique,Volume 21, No:2, pp. 135-142, 1971.
  • El Garhy, B., Galil, A. A., Youssef A. F., Raia, M. A., Behaviour Of Raft On Settlement Reducing Piles Experimental Model Study. J Rock Mech Geotech Eng 389–99, 2013 .
  • El Sawwaf, M., Experimental Study of Eccentrically Loaded Raft with Connected and Unconnected Short Piles. Journal of Geotechnical and Geoenvironmental Engineering 136. 10.1061/(ASCE)GT.1943-5606.0000341 2010.
  • Dung N.T., Chung S.G., Kim S.R.,. Settlement of large-scale piled foundations using equivalent raft approach, ICE Proceedings Geotechnical Engineering, 163 2010.
  • Abd Elsamee, W., Analysis Of Pile- Raft Foundations Non- Rested And Directly Rested On Soil. International Journal of Civil Engineering and Technology. 9. 418-439, 2018.
  • Lee, S. H., and Chung, C. K., An Experimental Study Of The Interaction Of Vertically Loaded Pile Groups İn Sand, Canadian Geotechnical Journal, 42, 1485–93, 2005.
  • Clancy, P., and Randolph, M., F., Simple Design Tools For Piled Raft Foundations, Geotechnique 46, No.2, 313­328. 1996.
  • Yamashita, K., Tanikawa, T., Hamada, J., Applicability Of Simple Method To Piled Raft Analysis In Comparison With Field Measurements. Geotechnical Engineering Journal of the SEAGS & AGSSEA. 46. 43-53, 2015.
  • A.S.T.M., Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, D-6913, American Society for Testing and Materials,West Conshohocken, 34, 2017.
  • A.S.T.M., Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, D-854, American Society for Testing and Materials, West Conshohocken, 8, 2006.
  • ASTM D4253-16, Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table, ASTM International, West Conshohocken, PA, www.astm.org, 2016.
  • ASTM D3080 / D3080M-11, Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, ASTM International, West Conshohocken, PA, www.astm.org, 2011.
  • Noonan, D. K. J., Nixon, J., F., The Determination of Young’s Modulus from the Direct Shear Test. Canadian Geotechnical Journal, 9(4), 504–507. doi:10.1139/t72-049 1972.
  • Çetin, K.,Ö., Geoteknik ve Sayısal Modelleme, İmo Meslek İçi Eğitim Kursu Raporu, 2018.
  • Tabaroei, A., Abrishami, S., Seyedi H., Ehsan., Comparison between Two Different Pluviation Setups of Sand Specimens. Journal of Materials in Civil Engineering. 29. 10.1061/(ASCE)MT.1943-5533.0001985, 2017 .
  • Hariprasad, C., Mekala, R., Umashankar, B., Preparation of Uniform Sand Specimens Using Stationary Pluviation and Vibratory Methods. Geotechnical and Geological Engineering. 34. 10.1007/s10706-016-0064-0, 2016.
  • Poulos, H., Piled Raft Foundations Design And Applications. Geotechnique. 51. 95-113. 10.1680/geot..51.2.95 2001.
  • Poulos, H., Randolph, M., Pile Group Analysis A Study of Two Methods. Journal of Geotechnical Engineering. 109. 10.1061/(ASCE)0733-9410109:3(355) 1983.
  • Nguyen, D. D. C., Jo, S. B., and Kim, D. S., Design Method Of Piled-Raft Foundations Under Vertical Load Considering İnteraction Effects, Computers and Geotechnics, 47, 16-27, 2013.
  • Bajad, S., P., and Sahu, R., B., An Experimental Study On The Behavior Of Vertically Loaded Piled Raft On Soft Clay, The 12th Intl. Conf. Of International Association for Computer Methods and Advances in Geomechanics (IACMAG), 84–90. 2008.
  • Birand, A. A., Kazıklı Temeller Teknik Yayınevi Ankara, 2007.
  • Nguyen, T., Chung, S., Kim, S., R., Settlement Of Piled Foundations Using Equivalent Raft Approach. ICE Proceedings Geotechnical Engineering, 163. 65-81. 10.1680/geng.2010.163.2.65, 2010.
  • Reese, L. C., William, M. I., Shin, T. W., Analysis and Design of Shallow and Deep Foundations, John Wiley Sons, Inc 2006.
  • Bowles, J.E., Foundation Analysis and Design. 5th Edition, McGraw-Hill, New York, 2001,
  • Tomlinson, M., J., Pile Design and Construction Practice, Chapman and Hall, London, UK, 2004.
  • Phung, L., Piled Raft A Cost-Effective Foundation Method For High-Rises. Geotechnical Engineering Journal of the SEAGS AGSSEA. 41. 1-12. 2010.
  • Schmitt, A. J., Turek, R. K., Reducing The Costs For Deep Foundations Of High–Rise Buildings By Advanced Numerical Modeling, Arı The Bulletin of the Istanbul Technical University, 35 (2), pp. 81-87, 2003.
  • El-Mossallamy Y., , Lutz, T. B., Richter Innovative Application Of Piled Raft Foundation To Optimize The Design Of High-Rise Buildings And Bridge Foundations In: Proc. 10th Intl. Conf. on Piling and Deep Foundations, Amsterdam 2006.

Kohezyonsuz Zeminde Kazık Aralığının Belirlenmesi ve Temel Davranışının Deneysel İncelenmesi

Year 2023, Volume: 34 Issue: 2, 145 - 172, 01.03.2023
https://doi.org/10.18400/tjce.1244594

Abstract

Bu çalışmada, %50 ve %85 olmak üzere, iki farklı rölatif sıkılığa sahip kum zeminde 40 adet model test deneyi yapılmıştır. Model temel sistemleri; uygulanan yükün, sadece radyeye, sadece kazıklara ve kazıklı radye temel sistemine taşıtıldığı durumlar dikkate alınarak oluşturulmuştur. Kazıklı radye temeller radyenin zemine gömülü olduğu ve zemine gömülü olmadığı iki farklı durum için irdelenmiştir. Eksenel statik artımsal yükler altında analiz edilen modellerde; optimum kazık aralığının radyenin gömülü olmadığı durumda daha küçük, gömülü olduğu durumda ise daha büyük S/D oranına sahip olduğu belirlenmiştir. Optimum kazık aralığı, orta sıkı zeminde, 1.5D ile 4D, çok sıkı zeminde 4.5D ile 6D arasında bulunmuştur.

References

  • Elwakil, A., Azzam, W., Experimental And Numerical Study Of Piled Raft System. Alexandria Engineering Journal. 55. 10.1016/j.aej.2015.10.001, 2015.
  • Hadi, Dheyaa & Fattah, Mohammed & Waheed, Mohanned. Effect of Pile's Number on the Behavior of Piled Raft Foundation. 39. 1080-1091. 10.30684/etj.v39i7.1795 2021.
  • Hamderi, M., Kazıklı Radye Temellerin Oturma Tahmini İçin Yeni Bir Yöntem, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, c. 9, sayı. 2, ss. 881-893, 2018.
  • Hamderi, M., New Approach to Group Pile Load Estimation. International Journal of Geomechanics. 04019013-1. 10.1061/(ASCE)GM.1943-5622.0001374, 2019.
  • Krisnanto, S., Sengara, I., Adelina, F., Advancement of Bearing Capacity and Settlement Analyses of Piled Raft Foundation, Proceeding SEAGC 3rd AGSSEA Conference in conjuction with 22nd Annual Indonesian National Conference on Geotechnical Engineering. Indonesia, 81-84,2018.
  • Kuwabara, F., An Elastic Analysis for Piled Raft Foundations in Homogeneous Soils, Soils and Foundations, Vol. 29, No:1, pp. 82-92, 1989.
  • Sharafkhah, M., Shooshpasha, I., Physical Modeling Of Behaviors Of Cast-In-Place Concrete Piled Raft Compared To Free-Standing Pile Group In Sand. Journal of Rock Mechanics Geotechnical Engineering, 10:703–16 2018, https://doi.org/10.1016/j.jrmge.2017.12.007.
  • Ersoy, Ç. Ö., Yıldırım, S., Experimental Investigation of Piles Behavior Subjected to Lateral Soil Movement. Teknik Dergi 25, 2014.
  • Al-Neami, M., & Rahil, F., A., K., Effect of Relative Density on Behavior of Single Pile and Piles Groups Embedded with Different Lengths in Sand. Engineering Technology. 34. 1206 2015 .
  • Hama, S., Soran S., Nihad, N., D., Optimum design of steel piles in different sandy soil configurations. Geomechanics and Geoengineering. 17. 1-11. 10.1080/17486025.2020.1755461 2020.
  • Babagiray, G., Akbaş, S. O., Sığ Rijit Tabaka Üzerinde Yer Alan Kohezyonsuz Zeminlerdeki Yüzeysel Temellerin Taşıma Gücü Hakkında Sayısal Modelleme Esaslı Parametrik Bir Çalışma. Teknik Dergi 29 8185-8198, 2018.
  • Ateş, B., Şadoglu, Erol., Kum Zeminlerdeki Kazıklı Radye Temellerin Optimum Kazık Aralığının Deneysel Olarak İncelenmesi. Teknik Dergi, 10.18400/tekderg.644885, 2021.
  • Raut, J., Khadeshwar, S., Bajad, S., Kadu, M., Simplified Design Method for Piled Raft Foundations. Geotechnical Special Publication. 462-471. 10.1061/9780784413425.047, 2014.
  • Butterfield, R., and Banerjee, P. K., The Problem of Pile Group-Pile Cap Interaction, Géotechnique,Volume 21, No:2, pp. 135-142, 1971.
  • El Garhy, B., Galil, A. A., Youssef A. F., Raia, M. A., Behaviour Of Raft On Settlement Reducing Piles Experimental Model Study. J Rock Mech Geotech Eng 389–99, 2013 .
  • El Sawwaf, M., Experimental Study of Eccentrically Loaded Raft with Connected and Unconnected Short Piles. Journal of Geotechnical and Geoenvironmental Engineering 136. 10.1061/(ASCE)GT.1943-5606.0000341 2010.
  • Dung N.T., Chung S.G., Kim S.R.,. Settlement of large-scale piled foundations using equivalent raft approach, ICE Proceedings Geotechnical Engineering, 163 2010.
  • Abd Elsamee, W., Analysis Of Pile- Raft Foundations Non- Rested And Directly Rested On Soil. International Journal of Civil Engineering and Technology. 9. 418-439, 2018.
  • Lee, S. H., and Chung, C. K., An Experimental Study Of The Interaction Of Vertically Loaded Pile Groups İn Sand, Canadian Geotechnical Journal, 42, 1485–93, 2005.
  • Clancy, P., and Randolph, M., F., Simple Design Tools For Piled Raft Foundations, Geotechnique 46, No.2, 313­328. 1996.
  • Yamashita, K., Tanikawa, T., Hamada, J., Applicability Of Simple Method To Piled Raft Analysis In Comparison With Field Measurements. Geotechnical Engineering Journal of the SEAGS & AGSSEA. 46. 43-53, 2015.
  • A.S.T.M., Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, D-6913, American Society for Testing and Materials,West Conshohocken, 34, 2017.
  • A.S.T.M., Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, D-854, American Society for Testing and Materials, West Conshohocken, 8, 2006.
  • ASTM D4253-16, Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table, ASTM International, West Conshohocken, PA, www.astm.org, 2016.
  • ASTM D3080 / D3080M-11, Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, ASTM International, West Conshohocken, PA, www.astm.org, 2011.
  • Noonan, D. K. J., Nixon, J., F., The Determination of Young’s Modulus from the Direct Shear Test. Canadian Geotechnical Journal, 9(4), 504–507. doi:10.1139/t72-049 1972.
  • Çetin, K.,Ö., Geoteknik ve Sayısal Modelleme, İmo Meslek İçi Eğitim Kursu Raporu, 2018.
  • Tabaroei, A., Abrishami, S., Seyedi H., Ehsan., Comparison between Two Different Pluviation Setups of Sand Specimens. Journal of Materials in Civil Engineering. 29. 10.1061/(ASCE)MT.1943-5533.0001985, 2017 .
  • Hariprasad, C., Mekala, R., Umashankar, B., Preparation of Uniform Sand Specimens Using Stationary Pluviation and Vibratory Methods. Geotechnical and Geological Engineering. 34. 10.1007/s10706-016-0064-0, 2016.
  • Poulos, H., Piled Raft Foundations Design And Applications. Geotechnique. 51. 95-113. 10.1680/geot..51.2.95 2001.
  • Poulos, H., Randolph, M., Pile Group Analysis A Study of Two Methods. Journal of Geotechnical Engineering. 109. 10.1061/(ASCE)0733-9410109:3(355) 1983.
  • Nguyen, D. D. C., Jo, S. B., and Kim, D. S., Design Method Of Piled-Raft Foundations Under Vertical Load Considering İnteraction Effects, Computers and Geotechnics, 47, 16-27, 2013.
  • Bajad, S., P., and Sahu, R., B., An Experimental Study On The Behavior Of Vertically Loaded Piled Raft On Soft Clay, The 12th Intl. Conf. Of International Association for Computer Methods and Advances in Geomechanics (IACMAG), 84–90. 2008.
  • Birand, A. A., Kazıklı Temeller Teknik Yayınevi Ankara, 2007.
  • Nguyen, T., Chung, S., Kim, S., R., Settlement Of Piled Foundations Using Equivalent Raft Approach. ICE Proceedings Geotechnical Engineering, 163. 65-81. 10.1680/geng.2010.163.2.65, 2010.
  • Reese, L. C., William, M. I., Shin, T. W., Analysis and Design of Shallow and Deep Foundations, John Wiley Sons, Inc 2006.
  • Bowles, J.E., Foundation Analysis and Design. 5th Edition, McGraw-Hill, New York, 2001,
  • Tomlinson, M., J., Pile Design and Construction Practice, Chapman and Hall, London, UK, 2004.
  • Phung, L., Piled Raft A Cost-Effective Foundation Method For High-Rises. Geotechnical Engineering Journal of the SEAGS AGSSEA. 41. 1-12. 2010.
  • Schmitt, A. J., Turek, R. K., Reducing The Costs For Deep Foundations Of High–Rise Buildings By Advanced Numerical Modeling, Arı The Bulletin of the Istanbul Technical University, 35 (2), pp. 81-87, 2003.
  • El-Mossallamy Y., , Lutz, T. B., Richter Innovative Application Of Piled Raft Foundation To Optimize The Design Of High-Rise Buildings And Bridge Foundations In: Proc. 10th Intl. Conf. on Piling and Deep Foundations, Amsterdam 2006.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Research Articles
Authors

Ercan Egemen Başar 0000-0001-8175-6923

İlyas Devran Çelik This is me 0000-0001-9011-4041

Münire Fındık This is me 0000-0001-7333-8713

Soner Uzundurukan This is me 0000-0003-4080-6642

Publication Date March 1, 2023
Submission Date March 17, 2022
Published in Issue Year 2023 Volume: 34 Issue: 2

Cite

APA Başar, E. E., Çelik, İ. D., Fındık, M., Uzundurukan, S. (2023). Kohezyonsuz Zeminde Kazık Aralığının Belirlenmesi ve Temel Davranışının Deneysel İncelenmesi. Turkish Journal of Civil Engineering, 34(2), 145-172. https://doi.org/10.18400/tjce.1244594
AMA Başar EE, Çelik İD, Fındık M, Uzundurukan S. Kohezyonsuz Zeminde Kazık Aralığının Belirlenmesi ve Temel Davranışının Deneysel İncelenmesi. TJCE. March 2023;34(2):145-172. doi:10.18400/tjce.1244594
Chicago Başar, Ercan Egemen, İlyas Devran Çelik, Münire Fındık, and Soner Uzundurukan. “Kohezyonsuz Zeminde Kazık Aralığının Belirlenmesi Ve Temel Davranışının Deneysel İncelenmesi”. Turkish Journal of Civil Engineering 34, no. 2 (March 2023): 145-72. https://doi.org/10.18400/tjce.1244594.
EndNote Başar EE, Çelik İD, Fındık M, Uzundurukan S (March 1, 2023) Kohezyonsuz Zeminde Kazık Aralığının Belirlenmesi ve Temel Davranışının Deneysel İncelenmesi. Turkish Journal of Civil Engineering 34 2 145–172.
IEEE E. E. Başar, İ. D. Çelik, M. Fındık, and S. Uzundurukan, “Kohezyonsuz Zeminde Kazık Aralığının Belirlenmesi ve Temel Davranışının Deneysel İncelenmesi”, TJCE, vol. 34, no. 2, pp. 145–172, 2023, doi: 10.18400/tjce.1244594.
ISNAD Başar, Ercan Egemen et al. “Kohezyonsuz Zeminde Kazık Aralığının Belirlenmesi Ve Temel Davranışının Deneysel İncelenmesi”. Turkish Journal of Civil Engineering 34/2 (March 2023), 145-172. https://doi.org/10.18400/tjce.1244594.
JAMA Başar EE, Çelik İD, Fındık M, Uzundurukan S. Kohezyonsuz Zeminde Kazık Aralığının Belirlenmesi ve Temel Davranışının Deneysel İncelenmesi. TJCE. 2023;34:145–172.
MLA Başar, Ercan Egemen et al. “Kohezyonsuz Zeminde Kazık Aralığının Belirlenmesi Ve Temel Davranışının Deneysel İncelenmesi”. Turkish Journal of Civil Engineering, vol. 34, no. 2, 2023, pp. 145-72, doi:10.18400/tjce.1244594.
Vancouver Başar EE, Çelik İD, Fındık M, Uzundurukan S. Kohezyonsuz Zeminde Kazık Aralığının Belirlenmesi ve Temel Davranışının Deneysel İncelenmesi. TJCE. 2023;34(2):145-72.