Research Article
BibTex RIS Cite

Nanomontmorillonite Reinforced Fibre Cements and Nanomontmorillonite-Nanosilica Reinforced Mortars

Year 2023, Volume: 34 Issue: 3, 43 - 60, 01.05.2023
https://doi.org/10.18400/tjce.1265476

Abstract

In this study the effect of an organomodified nanomontmorillonite (nMt) dispersion (nC2) and of a powder type nMt (nC4), were compared in quaternary low carbon footprint fibre-reinforced cementitious nanocomposites and mortars. 60% Portland cement, 20% limestone (LS) and 20% fly ash plus fibres/superplasticizer comprised the reference paste. nMt was added at 1% by mass. Pastes were investigated in terms of flexural strength, thermal properties, density and water impermeability. Neither of the two types offered strength enhancement. nC2 showed some potentials at late ages (90 days). Thermal gravimetric analyses showed limited additional pozzolanic activity towards the production of additional C–S– H at day 90, in agreement with flexural strength results and X-ray diffraction analysis, which showed the consumption of Ca(OH)2 even at day 28. No change in density was observed, whereas water impermeability tests showed that nC2 was more effectively organomodified not allowing water to be absorbed neither in the short nor in the long term, while nC4 at later ages seemed to be absorbing water back. Lastly, cubes of mortars were prepared and tested in compression in an attempt to fully investigate the potentials of the formulations. The effect of using simultaneously nMt and nanosilica (nS) was also recorded, however no increase in compressive strength was observed. The long-term density of the mortars was also investigated, results suggesting poor compaction which was not adjusted with the use of admixtures. These results are in support of previous studies undertaken in the field, showing that the purpose of use of organomodified nMt’s must be clearly defined before any formulations are designed.

References

  • R. Kalpokaitė-Dičkuvienė, I. Lukošiūtė, J. Čėsnienė, K. Brinkienė, A. Baltušnikas, Cement substitution by organoclay – The role of organoclay type, Cem. Concr. Compos. 62 (2015) 90–96. doi:10.1016/j.cemconcomp.2015.04.021.
  • K. Brinkienė, J. Čėsnienė, I. Lukošiūtė, Baltušnikas, Arūnas, R. Kalpokaitė-Dičkuvienė, Effect of organoclay addition on durability related properties of cement pastes, Fresenius Environ. Bull. 24 (2015) 2624–2629.
  • G. Habert, S.A. Miller, V.M. John, J.L. Provis, A. Favier, A. Horvath, et al., Environmental impacts and decarbonization strategies in the cement and concrete industries, Nat. Rev. Earth Environ. (2020). doi:10.1038/s43017-020-0093-3.
  • E. Gartner, Industrially interesting approaches to “low-CO2” cements, Cem. Concr. Res. 34 (2004) 1489–1498. doi:10.1016/j.cemconres.2004.01.021.
  • K.L. Scrivener, V.M. John, E.M. Gartner, Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry, Cem. Concr. Res. 114 (2018) 2–26. doi:10.1016/j.cemconres.2018.03.015.
  • X. He, X. Shi, Chloride permeability and microstructure of Portland cement mortars incorporating nanomaterials, Transp. Res. Rec. J. Transp. Res. Board. 2070 (2008) 13–21.
  • N. Farzadnia, A.A. Abang Ali, R. Demirboga, M.P. Anwar, Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars, Cem. Concr. Res. 48 (2013) 97–104. doi:http://dx.doi.org/10.1016/j.cemconres.2013.03.005.
  • S. Papatzani, Effect of nanosilica and montmorillonite nanoclay particles on cement hydration and microstructure, Mater. Sci. Technol. 32 (2016) 138–153. doi:10.1179/1743284715Y.0000000067.
  • M.C.G. Juenger, R. Siddique, Recent advances in understanding the role of supplementary cementitious materials in concrete, Cem. Concr. Res. 78 (2015) 71–80. doi:10.1016/j.cemconres.2015.03.018.
  • D. Wang, C. Shi, Z. Wu, L. Wu, S. Xiang, X. Pan, Effects of nanomaterials on hardening of cement–silica fume–fly ash-based ultra-high-strength concrete, Adv. Cem. Res. 28 (2016) 555–566. doi:10.1680/jadcr.15.00080.
  • Y. Reches, Nanoparticles as concrete additives: Review and perspectives, Constr. Build. Mater. 175 (2018) 483–495. doi:https://doi.org/10.1016/j.conbuildmat.2018.04.214.
  • S. Papatzani, K. Paine, From Nanostructural Characterization of Nanoparticles to Performance Assessment of Low Clinker Fiber–Cement Nanohybrids, Appl. Sci. 9 (2019) 22. doi:10.3390/app9091938.
  • S. Papatzani, K. Paine, Optimization of Low-Carbon Footprint Quaternary and Quinary (37 % Fly Ash) Cementitious Nanocomposites with Polycarboxylate or Aqueous Nanosilica Particles, Adv. Mater. Sci. Eng. 2019 (2019) 26. doi:10.1155/2019/5931306.
  • P. Yu, Z. Wang, P. Lai, P. Zhang, J. Wang, Evaluation of mechanic damping properties of montmorillonite/organo-modified montmorillonite-reinforced cement paste, Constr. Build. Mater. 203 (2019) 356–365. doi:https://doi.org/10.1016/j.conbuildmat.2019.01.110.
  • J. Čėsnienė, A. Baltušnikas, I. Lukošiūtė, K. Brinkienė, R. Kalpokaitė-Dičkuvienė, Influence of organoclay structural characteristics on properties and hydration of cement pastes, Constr. Build. Mater. 166 (2018) 59–71. doi:https://doi.org/10.1016/j.conbuildmat.2018.01.099.
  • R. Kalpokaitė-Dičkuvienė, S.I. Lukošiūtė, A. Baltušnikas, J. Čėsnienė, Structural observation of cement paste modified with hydrophobic organoclay, Constr. Build. Mater. 272 (2021) 121931. doi:https://doi.org/10.1016/j.conbuildmat.2020.121931.
  • J.-A. Oh, Y. Zhuge, S. Araby, R. Wang, H. Yu, W. Fan, et al., Cement nanocomposites containing montmorillonite nanosheets modified with surfactants of various chain lengths, Cem. Concr. Compos. 116 (2021) 103894. doi:https://doi.org/10.1016/j.cemconcomp.2020.103894.
  • S. Khandelwal, K.Y. Rhee, Evaluation of pozzolanic activity, heterogeneous nucleation, and microstructure of cement composites with modified bentonite clays, Constr. Build. Mater. 323 (2022) 126617. doi:https://doi.org/10.1016/j.conbuildmat.2022.126617.
  • S. Khandelwal, K.Y. Rhee, Effect of silane modified smectite clay on the hydration, intercalation of PCE superplasticizers, and mechanical strength of cement composites, Cem. Concr. Compos. 123 (2021) 104210. doi:https://doi.org/10.1016/j.cemconcomp.2021.104210.
  • S. Papatzani, K. Paine, A Step by Step Methodology for Building Sustainable Cementitious Matrices, Appl. Sci. 10 (2020) 2955. doi:10.3390/app10082955.
  • S. Papatzani, S. Grammatikos, K. Paine, Interesting remarks on the comparison of organomodified nanomontmorillonites in fibre-cement nanohybrids, IOP Conf. Ser. Mater. Sci. Eng. 842 (2020) 5. doi:https://doi.org/10.1088/1757-899X/842/1/012008.
  • BCA, Fact Sheet 18 [Part 1] - Embodied CO2 of UK cement, additions and cementitious materials, (2009). www.cementindustry.co.uk.
  • BSI, BS EN 197-1:2011: Cement. Part 1: Composition, specifications and conformity criteria for common cements, BSI, London, UK, 2011.
  • S. Papatzani, E.G. Badogiannis, K. Paine, The pozzolanic properties of inorganic and organomodified nano-montmorillonite dispersions, Constr. Build. Mater. 167 (2018) 299–316. doi:10.1016/j.conbuildmat.2018.01.123.
  • S. Papatzani, K. Paine, Inorganic and organomodified nano-montmorillonite dispersions for use as supplementary cementitious materials - A novel theory based on nanostructural studies, Nanocomposites. 3 (2017) 2–19. doi:10.1080/20550324.2017.1315210.
  • S. Papatzani, Nanotechnologically modified cements: Effects on hydration, microstructure and physical properties, University of Bath, 2014.
  • J. Calabria-Holley, K. Paine, S. Papatzani, Effects of nanosilica on the calcium silicate hydrates in Portland cement–fly ash systems, Adv. Cem. Res. 27 (2015) 187–200. doi:10.1680/adcr.13.00098.
  • S. Papatzani, S. Grammatikos, K. Paine, Permeable Nanomontmorillonite and Fibre Reinforced Cementitious Binders, Materials (Basel). 12 (2019) 3245. doi:10.3390/ma12193245.
  • S. Papatzani, K. Paine, Polycarboxylate/nanosilica-modified quaternary cement formulations – enhancements and limitations, Adv. Cem. Res. 30 (2018) 256–269. doi:10.1680/jadcr.17.00111.
  • BSI, BS EN 196-1:2005: Methods of testing cement - determination of strength, BSI, London, UK, 2005.
  • X. Gu, H. Tan, X. He, J. Zhang, X. Deng, Z. Zheng, et al., Improvement in flexural strength of Portland cement by lamellar structured montmorillonite, Constr. Build. Mater. 329 (2022) 127208. doi:https://doi.org/10.1016/j.conbuildmat.2022.127208.
Year 2023, Volume: 34 Issue: 3, 43 - 60, 01.05.2023
https://doi.org/10.18400/tjce.1265476

Abstract

References

  • R. Kalpokaitė-Dičkuvienė, I. Lukošiūtė, J. Čėsnienė, K. Brinkienė, A. Baltušnikas, Cement substitution by organoclay – The role of organoclay type, Cem. Concr. Compos. 62 (2015) 90–96. doi:10.1016/j.cemconcomp.2015.04.021.
  • K. Brinkienė, J. Čėsnienė, I. Lukošiūtė, Baltušnikas, Arūnas, R. Kalpokaitė-Dičkuvienė, Effect of organoclay addition on durability related properties of cement pastes, Fresenius Environ. Bull. 24 (2015) 2624–2629.
  • G. Habert, S.A. Miller, V.M. John, J.L. Provis, A. Favier, A. Horvath, et al., Environmental impacts and decarbonization strategies in the cement and concrete industries, Nat. Rev. Earth Environ. (2020). doi:10.1038/s43017-020-0093-3.
  • E. Gartner, Industrially interesting approaches to “low-CO2” cements, Cem. Concr. Res. 34 (2004) 1489–1498. doi:10.1016/j.cemconres.2004.01.021.
  • K.L. Scrivener, V.M. John, E.M. Gartner, Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry, Cem. Concr. Res. 114 (2018) 2–26. doi:10.1016/j.cemconres.2018.03.015.
  • X. He, X. Shi, Chloride permeability and microstructure of Portland cement mortars incorporating nanomaterials, Transp. Res. Rec. J. Transp. Res. Board. 2070 (2008) 13–21.
  • N. Farzadnia, A.A. Abang Ali, R. Demirboga, M.P. Anwar, Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars, Cem. Concr. Res. 48 (2013) 97–104. doi:http://dx.doi.org/10.1016/j.cemconres.2013.03.005.
  • S. Papatzani, Effect of nanosilica and montmorillonite nanoclay particles on cement hydration and microstructure, Mater. Sci. Technol. 32 (2016) 138–153. doi:10.1179/1743284715Y.0000000067.
  • M.C.G. Juenger, R. Siddique, Recent advances in understanding the role of supplementary cementitious materials in concrete, Cem. Concr. Res. 78 (2015) 71–80. doi:10.1016/j.cemconres.2015.03.018.
  • D. Wang, C. Shi, Z. Wu, L. Wu, S. Xiang, X. Pan, Effects of nanomaterials on hardening of cement–silica fume–fly ash-based ultra-high-strength concrete, Adv. Cem. Res. 28 (2016) 555–566. doi:10.1680/jadcr.15.00080.
  • Y. Reches, Nanoparticles as concrete additives: Review and perspectives, Constr. Build. Mater. 175 (2018) 483–495. doi:https://doi.org/10.1016/j.conbuildmat.2018.04.214.
  • S. Papatzani, K. Paine, From Nanostructural Characterization of Nanoparticles to Performance Assessment of Low Clinker Fiber–Cement Nanohybrids, Appl. Sci. 9 (2019) 22. doi:10.3390/app9091938.
  • S. Papatzani, K. Paine, Optimization of Low-Carbon Footprint Quaternary and Quinary (37 % Fly Ash) Cementitious Nanocomposites with Polycarboxylate or Aqueous Nanosilica Particles, Adv. Mater. Sci. Eng. 2019 (2019) 26. doi:10.1155/2019/5931306.
  • P. Yu, Z. Wang, P. Lai, P. Zhang, J. Wang, Evaluation of mechanic damping properties of montmorillonite/organo-modified montmorillonite-reinforced cement paste, Constr. Build. Mater. 203 (2019) 356–365. doi:https://doi.org/10.1016/j.conbuildmat.2019.01.110.
  • J. Čėsnienė, A. Baltušnikas, I. Lukošiūtė, K. Brinkienė, R. Kalpokaitė-Dičkuvienė, Influence of organoclay structural characteristics on properties and hydration of cement pastes, Constr. Build. Mater. 166 (2018) 59–71. doi:https://doi.org/10.1016/j.conbuildmat.2018.01.099.
  • R. Kalpokaitė-Dičkuvienė, S.I. Lukošiūtė, A. Baltušnikas, J. Čėsnienė, Structural observation of cement paste modified with hydrophobic organoclay, Constr. Build. Mater. 272 (2021) 121931. doi:https://doi.org/10.1016/j.conbuildmat.2020.121931.
  • J.-A. Oh, Y. Zhuge, S. Araby, R. Wang, H. Yu, W. Fan, et al., Cement nanocomposites containing montmorillonite nanosheets modified with surfactants of various chain lengths, Cem. Concr. Compos. 116 (2021) 103894. doi:https://doi.org/10.1016/j.cemconcomp.2020.103894.
  • S. Khandelwal, K.Y. Rhee, Evaluation of pozzolanic activity, heterogeneous nucleation, and microstructure of cement composites with modified bentonite clays, Constr. Build. Mater. 323 (2022) 126617. doi:https://doi.org/10.1016/j.conbuildmat.2022.126617.
  • S. Khandelwal, K.Y. Rhee, Effect of silane modified smectite clay on the hydration, intercalation of PCE superplasticizers, and mechanical strength of cement composites, Cem. Concr. Compos. 123 (2021) 104210. doi:https://doi.org/10.1016/j.cemconcomp.2021.104210.
  • S. Papatzani, K. Paine, A Step by Step Methodology for Building Sustainable Cementitious Matrices, Appl. Sci. 10 (2020) 2955. doi:10.3390/app10082955.
  • S. Papatzani, S. Grammatikos, K. Paine, Interesting remarks on the comparison of organomodified nanomontmorillonites in fibre-cement nanohybrids, IOP Conf. Ser. Mater. Sci. Eng. 842 (2020) 5. doi:https://doi.org/10.1088/1757-899X/842/1/012008.
  • BCA, Fact Sheet 18 [Part 1] - Embodied CO2 of UK cement, additions and cementitious materials, (2009). www.cementindustry.co.uk.
  • BSI, BS EN 197-1:2011: Cement. Part 1: Composition, specifications and conformity criteria for common cements, BSI, London, UK, 2011.
  • S. Papatzani, E.G. Badogiannis, K. Paine, The pozzolanic properties of inorganic and organomodified nano-montmorillonite dispersions, Constr. Build. Mater. 167 (2018) 299–316. doi:10.1016/j.conbuildmat.2018.01.123.
  • S. Papatzani, K. Paine, Inorganic and organomodified nano-montmorillonite dispersions for use as supplementary cementitious materials - A novel theory based on nanostructural studies, Nanocomposites. 3 (2017) 2–19. doi:10.1080/20550324.2017.1315210.
  • S. Papatzani, Nanotechnologically modified cements: Effects on hydration, microstructure and physical properties, University of Bath, 2014.
  • J. Calabria-Holley, K. Paine, S. Papatzani, Effects of nanosilica on the calcium silicate hydrates in Portland cement–fly ash systems, Adv. Cem. Res. 27 (2015) 187–200. doi:10.1680/adcr.13.00098.
  • S. Papatzani, S. Grammatikos, K. Paine, Permeable Nanomontmorillonite and Fibre Reinforced Cementitious Binders, Materials (Basel). 12 (2019) 3245. doi:10.3390/ma12193245.
  • S. Papatzani, K. Paine, Polycarboxylate/nanosilica-modified quaternary cement formulations – enhancements and limitations, Adv. Cem. Res. 30 (2018) 256–269. doi:10.1680/jadcr.17.00111.
  • BSI, BS EN 196-1:2005: Methods of testing cement - determination of strength, BSI, London, UK, 2005.
  • X. Gu, H. Tan, X. He, J. Zhang, X. Deng, Z. Zheng, et al., Improvement in flexural strength of Portland cement by lamellar structured montmorillonite, Constr. Build. Mater. 329 (2022) 127208. doi:https://doi.org/10.1016/j.conbuildmat.2022.127208.
There are 31 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Styliani Papatzani 0000-0001-8475-8975

Kevin Paıne This is me 0000-0001-7455-7002

Early Pub Date May 3, 2023
Publication Date May 1, 2023
Submission Date March 15, 2022
Published in Issue Year 2023 Volume: 34 Issue: 3

Cite

APA Papatzani, S., & Paıne, K. (2023). Nanomontmorillonite Reinforced Fibre Cements and Nanomontmorillonite-Nanosilica Reinforced Mortars. Turkish Journal of Civil Engineering, 34(3), 43-60. https://doi.org/10.18400/tjce.1265476
AMA Papatzani S, Paıne K. Nanomontmorillonite Reinforced Fibre Cements and Nanomontmorillonite-Nanosilica Reinforced Mortars. tjce. May 2023;34(3):43-60. doi:10.18400/tjce.1265476
Chicago Papatzani, Styliani, and Kevin Paıne. “Nanomontmorillonite Reinforced Fibre Cements and Nanomontmorillonite-Nanosilica Reinforced Mortars”. Turkish Journal of Civil Engineering 34, no. 3 (May 2023): 43-60. https://doi.org/10.18400/tjce.1265476.
EndNote Papatzani S, Paıne K (May 1, 2023) Nanomontmorillonite Reinforced Fibre Cements and Nanomontmorillonite-Nanosilica Reinforced Mortars. Turkish Journal of Civil Engineering 34 3 43–60.
IEEE S. Papatzani and K. Paıne, “Nanomontmorillonite Reinforced Fibre Cements and Nanomontmorillonite-Nanosilica Reinforced Mortars”, tjce, vol. 34, no. 3, pp. 43–60, 2023, doi: 10.18400/tjce.1265476.
ISNAD Papatzani, Styliani - Paıne, Kevin. “Nanomontmorillonite Reinforced Fibre Cements and Nanomontmorillonite-Nanosilica Reinforced Mortars”. Turkish Journal of Civil Engineering 34/3 (May 2023), 43-60. https://doi.org/10.18400/tjce.1265476.
JAMA Papatzani S, Paıne K. Nanomontmorillonite Reinforced Fibre Cements and Nanomontmorillonite-Nanosilica Reinforced Mortars. tjce. 2023;34:43–60.
MLA Papatzani, Styliani and Kevin Paıne. “Nanomontmorillonite Reinforced Fibre Cements and Nanomontmorillonite-Nanosilica Reinforced Mortars”. Turkish Journal of Civil Engineering, vol. 34, no. 3, 2023, pp. 43-60, doi:10.18400/tjce.1265476.
Vancouver Papatzani S, Paıne K. Nanomontmorillonite Reinforced Fibre Cements and Nanomontmorillonite-Nanosilica Reinforced Mortars. tjce. 2023;34(3):43-60.