Research Article
BibTex RIS Cite

The Numerical and Analytical Investigation of Shallow Foundation Behaviour on Layered Soils

Year 2024, Volume: 35 Issue: 2, 125 - 156, 01.03.2024
https://doi.org/10.18400/tjce.1259495

Abstract

A validated and calibrated finite element model has been generated using the results of the full-scale loading tests performed in the field. The affects of the footing size, initial stress state and stress history of sand layer, the thickness of upper sand layer and the undrained shear strength of lower clay layer on the bearing capacity and settlement behaviours of square footings on layered soils have been investigated by performing a series of three-dimensional finite element analyses. The bearing capacity values obtained from finite element analyses have been compared to the bearing capacity values calculated by punching shear method. Also, the variation of Ks coefficient depending on the H/B ratio and ƛs has been investigated.

References

  • Terzaghi, K., Theoretical Soil Mechanics, New york. Wiley, 1943.
  • Meyerhof, G.G., The Ultimate Bearing Capacity of Foundations. Geotechnique, 2, 301-332, 1951.
  • Hansen, J. B., A Revised and Extended Formula for Bearing Capacity. Bulletin No.28, Danish Geotechnical Institute, Copenhagen, pp. 5–11, 1970.
  • Vesic, A. S., Analysis of Ultimate Loads of Shallow Foundations. Journal of the Soil Mechanics and Foundations Division, ASCE, 99(SM1), 45–73, 1973.
  • Meyerhof,G.G., Ultimate Bearing Capacity of Footings on Sand Overlying Clay. Canadian Geotechnical Journal, 11 (2), 223-229, 1974.
  • Hanna, A.M., Meyerhof, G.G., Design Charts for Ultimate Bearing Capacity of Foundations on Sand Overlying Soft Clay. Canadian Geotechnical Journal, 17, 300-303, 1980.
  • Hanna, A.M., Foundations on Strong Sand Overlying Weak Sand. J. Geotech. Eng. Div., 107(7), 915-927, 1981.
  • Burd, H.J., Frydman, S., Bearing Capacity of Plane-Strain Footings on Layered Soils. Canadian Geotechnical Journal, 34, 241-253, 1997.
  • Uncuoğlu, E., The Bearing Capacity of Square Footings on A Sand Layer Overlying Clay. Geomechanics and Engineering, 9(3), 287-311, 2015.
  • Mosallanezhad, M., Moayedi, H., Comparison Analysis of Bearing Capacity Approaches for the Strip Footing on Layered Soils. Arabian Journal for Science and Engineering, 42, 3711–3722, 2017.
  • Tang, C., Phoon, K,K., Zhang, L., Li, D,Q., Model Uncertainty for Predicting the Bearing Capacity of Sand Overlying Clay. International Journal of Geomechanics, 17 (7), 2017, 04017015.
  • Eshkevari, S.S., Bearing Capacity of Surface Strip Footings on Layered Soils, Ph.D. Dissertation. The University of Newcastle, Australia, 2018.
  • Eshkevari, S.S., Abbo, A.J., Kouretzis, G., Bearing Capacity of Strip Footings on Sand Over Clay. Canadian Geotechnical Journal, 56, 699-709, 2019.
  • Zheng, G., Wang, E., Zhao, J., Zhou, H., Nie, D., Ultimate Bearing Capacity of Vertically Loaded Strip Footings on Sand Overlying Clay. Computers and Geotechnics, 115, 2019, 103151.
  • Zheng, G., Zhao, J., Zhou, H., Zhang, T., Ultimate Bearing Capacity of Strip Footings on Sand Overlying Clay under Inclined Loading. Computers and Geotechnics, 106, 266-273, 2019.
  • Pham, Q.N., Ohtsuka, S., Ultimate Bearing Capacity of Rigid Footing on Two Layered Soils of Sand-Clay. International Journal of Geomechanics, 21(7), 2021, 04021115.
  • Briaud, J.L., Gibbens, R., Large-Scale Load Tests and Data Base of Spread footings on Sand. Publication No. FHWA-Rd-97-068, November, 1997.
  • Briaud, J.L., Jeanjean, P., Load Settlement Curve Method for Spread Footings on Sand. Journal of Geotechnical and Geoenvironmental Engineering, 133(8), 905-920, 1994.
  • Amar, S., Baguelin, F., Canepa, Y., Frank, R., Experimental Study of the Settlement of Shallow Foundations. Geotechnical Special Publication, ASCE, 40(2), 1602-1610, 1994.
  • Lavasan, A.A., Ghazavi, M., Behavior of Closely Spaced Square and Circular Footings on Reinforced Sand. Soils and Foundations, 52(1), 160-167, 2012.
  • Cerato, A.B., Scale Effect of Shallow Foundation Bearing Capacity on Granular Material, Ph.D. Dissertation. University of Massachusetts Amherts, MA, USA, 2005.
  • Cerato, A.B., Lutenegger, A.J., Scale Effect of Shallow Foundation Bearing Capacity on Granular Material. Journal of Geotechnical and Geoenvironmental Engineering, 133(10), 1192-1202, 2007.
  • Lutenegger, A.J., Adams, M.T., Bearing Capacity of Footings on Compacted Sand, International Conference on Case Histories in Geotechnical Engineering. 36, 1216-1224, 1998. https://scholarsmine.mst.edu/icchge/4icchge/4icchge-session01/36.
  • Michalowski, R.L., Shi, L., Bearing Capacity of Footings Over Two-Layer Foundation Soils. Journal of Geotechnical Engineering, 121 (5), 421-428, 1995.
  • Merifield, R.S., Sloan, S.W., Yu, H.S., Rigorous Plasticity Solutions for the Bearing Capacity of Two-Layered Clays. Geotechnique, 49(4), 471-490, 1999.
  • Shiau, J.S., Lyamin, A.V., Sloan, S.W., Bearing Capacity of A Sand Layer on Clay by Finite Element Limit Analysis. Canadian Geotechnical Journal, 40, 900-915, 2003.
  • Plaxis 3D (2012), Delft, Netherlands.
  • Lo Presti, D. C. F., Jamiolkowski, M., Pallara, O., Pisciotta, V., Ture, S., Stress Dependence of Sand Stiffness, International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 1995, 71-76. https://scholarsmine.mst.edu/icrageesd/03icrageesd/session01/16.
  • Maeda, K., Miura, K., Confining Stress Dependency of Mechanical Properties of Sands. Soils and Foundations, 39, 1999, 53-67.
  • Tjie-Liong, G., Common Mistakes on the Application of Plaxis 2D in Analyzing Excavation Problems. International Journal of Applied Engineering Research, 9, 2014, 8291-8311.
  • Babagiray, G., Akbaş, S.O., Sığ Rijit Tabaka Üzerinde Yer Alan Kohezyonsuz Zeminlerdeki Yüzeysel Temellerin Taşıma Gücü Hakkında Sayısal Modelleme Esaslı Parametrik Bir Çalışma. İMO Teknik Dergi, 494, 2018, 8185-8198.
  • The Hardening Soil Model-A Practical Guidebook, Z Soil. PC 100701 report, revised 21.10.2018.
  • Bolton, M.D., The Strength and Dilatancy of Sands. Geotechnique, 36(1), 65-78, 1986.
  • Poulos, H.G., Small, J.C., “Development of design charts for concrete pavements and industrial ground slabs” Chapter 2, Design Applications of Raft Foundations, Hemsley. Ed. J.A., Thomas Telford, 39-70, 2000.
  • Dustin, R., Initial Elastic Modulus Degradation Using Pressuremeter and Standard Penetration Test Results at Two Sites, Master of Science Theses. University of Nevada Las Vegas, 2013.
  • Briaud, J.L., Geotechnical Engineering: Unsaturated and Saturated Soils, New Jersey. John Wiley & Sons, Inc. Hoboken, 2013.
  • Bowles, J. E. Foundation analysis and design (5th ed.), New York. The McGraw-Hill Companies, Inc., 1997.
  • Coduto, D., Yeung, M.C., Kitch, W., Geotechnical Engineering: Principles&Practices, New Jersey. Pearson Prentice Hall, 2011.
  • Lee, J., Salgado, R., Estimation of Bearing Capacity of Circular Footings on Sands Based on Cone Penetration Test. Journal of Geotechnical and Geoenvironmental Engineering, 131(4), 442-452, 2005.
  • Nguyen, D.L., Ohtsuka, S., Hoshina, T., Isobe, K., Discussion on Size Effect of Footing in Ultimate Bearing Capacity of Sandy Soil Using Rigid Plastic Finite Element Method. Soils and Foundations, 56(1), 93-103, 2016.
  • Ueno, K., Miura, K., Maeda, Y., Prediction of Ultimate Bearing Capacity of Surface Footings with Regard to Size Effects. Soils and Foundations, 38(3): 165-178, 1998.
  • Lee, J., Salgado, R., Kim, S., Bearing Capacity of Circular Footings under Surcharge Using State-Dependent Finite Element Analysis. Computers and Geotechnics, 32, 445-457, 2005.
  • Chen, J., Dong, Y., Whittle, A.J., Prediction and Evaluation of Size Effects for Surface Foundations on Sand. Journal of Geotechnical and Geoenvironmental Engineering, 146(5), 2020, 04020022.
  • Jozsa, V., Estimation and Separation of Preconsolidation Stress Using Triaxial and Oedometer Test in Kiscelli Clay. Periodica Polytechnica Civil Engineering, 60(2), 297-304, 2016.
  • Zelger, J., Calibration of 2D Pre-Relaxation Factors in Tunnelling with 3D Finite Element Calculations, MSc. Thesis. Graz University of Technology, 2012.
  • Melnikov, R., Zazulya, J., Stepanov, M., Ashikkmin, O., Maltseva, T., OCR and POP Parameters in Plaxis-Based Numerical Analysis of Loaded Over Consolidated Soils. Procedia Engineering, 165, 845-852, 2016.
  • Massarsch, K. R., Westerberg, E., Broms, B.B., Footings Supported on Settlement-Reducing Vibrated Soil Nails, Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering, Hamburg/6-12 September 1997, 1533-1539.
  • Holtz, D.R., Kovacs, D.W., An Introduction to Geotechnical Engineering, New Jersey. Prentice-Hall, Inc. Englewood Cliffs, 1981.
  • Cetin, H., An Experimental Study of Soil Memory and Preconsolidation Adjacent to An Active Tectonic Structure: The Meers Fault, Oklahoma, USA. Engineering Geology, 57, 169-178, 2000.

Tabakalı Zeminlerdeki Yüzeysel Temel Davranışının Nümerik ve Analitik Olarak İncelenmesi

Year 2024, Volume: 35 Issue: 2, 125 - 156, 01.03.2024
https://doi.org/10.18400/tjce.1259495

Abstract

Arazide yapılmış tam ölçekli yükleme deney sonuçları kullanılarak doğrulanmış ve kalibre edilmiş bir sonlu elemanlar modeli oluşturulmuştur. Temel boyutunun, kum zeminin başlangıç gerilme durumu ve gerilme geçmişinin, üstte yer alan kum tabakası kalınlığının ve altta yer alan kil tabakasının drenajsız kayma mukavemetinin tabakalı zeminlerdeki kare temellerin taşıma kapasitesi ve oturma davranışları üzerindeki etkileri gerçekleştirilen bir seri üç boyutlu sonlu elemanlar analizi ile araştırılmıştır. Sonlu eleman analizleri sonucu bulunan taşıma gücü değerleri zımbalama kesme yöntemi ile hesaplanan taşıma gücü değerleri ile karşılaştırılmış ve bunun yanı sıra Ks katsayısı değerlerinin H/B oranına ve ƛs’ e bağlı değişimi incelenmiştir.

References

  • Terzaghi, K., Theoretical Soil Mechanics, New york. Wiley, 1943.
  • Meyerhof, G.G., The Ultimate Bearing Capacity of Foundations. Geotechnique, 2, 301-332, 1951.
  • Hansen, J. B., A Revised and Extended Formula for Bearing Capacity. Bulletin No.28, Danish Geotechnical Institute, Copenhagen, pp. 5–11, 1970.
  • Vesic, A. S., Analysis of Ultimate Loads of Shallow Foundations. Journal of the Soil Mechanics and Foundations Division, ASCE, 99(SM1), 45–73, 1973.
  • Meyerhof,G.G., Ultimate Bearing Capacity of Footings on Sand Overlying Clay. Canadian Geotechnical Journal, 11 (2), 223-229, 1974.
  • Hanna, A.M., Meyerhof, G.G., Design Charts for Ultimate Bearing Capacity of Foundations on Sand Overlying Soft Clay. Canadian Geotechnical Journal, 17, 300-303, 1980.
  • Hanna, A.M., Foundations on Strong Sand Overlying Weak Sand. J. Geotech. Eng. Div., 107(7), 915-927, 1981.
  • Burd, H.J., Frydman, S., Bearing Capacity of Plane-Strain Footings on Layered Soils. Canadian Geotechnical Journal, 34, 241-253, 1997.
  • Uncuoğlu, E., The Bearing Capacity of Square Footings on A Sand Layer Overlying Clay. Geomechanics and Engineering, 9(3), 287-311, 2015.
  • Mosallanezhad, M., Moayedi, H., Comparison Analysis of Bearing Capacity Approaches for the Strip Footing on Layered Soils. Arabian Journal for Science and Engineering, 42, 3711–3722, 2017.
  • Tang, C., Phoon, K,K., Zhang, L., Li, D,Q., Model Uncertainty for Predicting the Bearing Capacity of Sand Overlying Clay. International Journal of Geomechanics, 17 (7), 2017, 04017015.
  • Eshkevari, S.S., Bearing Capacity of Surface Strip Footings on Layered Soils, Ph.D. Dissertation. The University of Newcastle, Australia, 2018.
  • Eshkevari, S.S., Abbo, A.J., Kouretzis, G., Bearing Capacity of Strip Footings on Sand Over Clay. Canadian Geotechnical Journal, 56, 699-709, 2019.
  • Zheng, G., Wang, E., Zhao, J., Zhou, H., Nie, D., Ultimate Bearing Capacity of Vertically Loaded Strip Footings on Sand Overlying Clay. Computers and Geotechnics, 115, 2019, 103151.
  • Zheng, G., Zhao, J., Zhou, H., Zhang, T., Ultimate Bearing Capacity of Strip Footings on Sand Overlying Clay under Inclined Loading. Computers and Geotechnics, 106, 266-273, 2019.
  • Pham, Q.N., Ohtsuka, S., Ultimate Bearing Capacity of Rigid Footing on Two Layered Soils of Sand-Clay. International Journal of Geomechanics, 21(7), 2021, 04021115.
  • Briaud, J.L., Gibbens, R., Large-Scale Load Tests and Data Base of Spread footings on Sand. Publication No. FHWA-Rd-97-068, November, 1997.
  • Briaud, J.L., Jeanjean, P., Load Settlement Curve Method for Spread Footings on Sand. Journal of Geotechnical and Geoenvironmental Engineering, 133(8), 905-920, 1994.
  • Amar, S., Baguelin, F., Canepa, Y., Frank, R., Experimental Study of the Settlement of Shallow Foundations. Geotechnical Special Publication, ASCE, 40(2), 1602-1610, 1994.
  • Lavasan, A.A., Ghazavi, M., Behavior of Closely Spaced Square and Circular Footings on Reinforced Sand. Soils and Foundations, 52(1), 160-167, 2012.
  • Cerato, A.B., Scale Effect of Shallow Foundation Bearing Capacity on Granular Material, Ph.D. Dissertation. University of Massachusetts Amherts, MA, USA, 2005.
  • Cerato, A.B., Lutenegger, A.J., Scale Effect of Shallow Foundation Bearing Capacity on Granular Material. Journal of Geotechnical and Geoenvironmental Engineering, 133(10), 1192-1202, 2007.
  • Lutenegger, A.J., Adams, M.T., Bearing Capacity of Footings on Compacted Sand, International Conference on Case Histories in Geotechnical Engineering. 36, 1216-1224, 1998. https://scholarsmine.mst.edu/icchge/4icchge/4icchge-session01/36.
  • Michalowski, R.L., Shi, L., Bearing Capacity of Footings Over Two-Layer Foundation Soils. Journal of Geotechnical Engineering, 121 (5), 421-428, 1995.
  • Merifield, R.S., Sloan, S.W., Yu, H.S., Rigorous Plasticity Solutions for the Bearing Capacity of Two-Layered Clays. Geotechnique, 49(4), 471-490, 1999.
  • Shiau, J.S., Lyamin, A.V., Sloan, S.W., Bearing Capacity of A Sand Layer on Clay by Finite Element Limit Analysis. Canadian Geotechnical Journal, 40, 900-915, 2003.
  • Plaxis 3D (2012), Delft, Netherlands.
  • Lo Presti, D. C. F., Jamiolkowski, M., Pallara, O., Pisciotta, V., Ture, S., Stress Dependence of Sand Stiffness, International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 1995, 71-76. https://scholarsmine.mst.edu/icrageesd/03icrageesd/session01/16.
  • Maeda, K., Miura, K., Confining Stress Dependency of Mechanical Properties of Sands. Soils and Foundations, 39, 1999, 53-67.
  • Tjie-Liong, G., Common Mistakes on the Application of Plaxis 2D in Analyzing Excavation Problems. International Journal of Applied Engineering Research, 9, 2014, 8291-8311.
  • Babagiray, G., Akbaş, S.O., Sığ Rijit Tabaka Üzerinde Yer Alan Kohezyonsuz Zeminlerdeki Yüzeysel Temellerin Taşıma Gücü Hakkında Sayısal Modelleme Esaslı Parametrik Bir Çalışma. İMO Teknik Dergi, 494, 2018, 8185-8198.
  • The Hardening Soil Model-A Practical Guidebook, Z Soil. PC 100701 report, revised 21.10.2018.
  • Bolton, M.D., The Strength and Dilatancy of Sands. Geotechnique, 36(1), 65-78, 1986.
  • Poulos, H.G., Small, J.C., “Development of design charts for concrete pavements and industrial ground slabs” Chapter 2, Design Applications of Raft Foundations, Hemsley. Ed. J.A., Thomas Telford, 39-70, 2000.
  • Dustin, R., Initial Elastic Modulus Degradation Using Pressuremeter and Standard Penetration Test Results at Two Sites, Master of Science Theses. University of Nevada Las Vegas, 2013.
  • Briaud, J.L., Geotechnical Engineering: Unsaturated and Saturated Soils, New Jersey. John Wiley & Sons, Inc. Hoboken, 2013.
  • Bowles, J. E. Foundation analysis and design (5th ed.), New York. The McGraw-Hill Companies, Inc., 1997.
  • Coduto, D., Yeung, M.C., Kitch, W., Geotechnical Engineering: Principles&Practices, New Jersey. Pearson Prentice Hall, 2011.
  • Lee, J., Salgado, R., Estimation of Bearing Capacity of Circular Footings on Sands Based on Cone Penetration Test. Journal of Geotechnical and Geoenvironmental Engineering, 131(4), 442-452, 2005.
  • Nguyen, D.L., Ohtsuka, S., Hoshina, T., Isobe, K., Discussion on Size Effect of Footing in Ultimate Bearing Capacity of Sandy Soil Using Rigid Plastic Finite Element Method. Soils and Foundations, 56(1), 93-103, 2016.
  • Ueno, K., Miura, K., Maeda, Y., Prediction of Ultimate Bearing Capacity of Surface Footings with Regard to Size Effects. Soils and Foundations, 38(3): 165-178, 1998.
  • Lee, J., Salgado, R., Kim, S., Bearing Capacity of Circular Footings under Surcharge Using State-Dependent Finite Element Analysis. Computers and Geotechnics, 32, 445-457, 2005.
  • Chen, J., Dong, Y., Whittle, A.J., Prediction and Evaluation of Size Effects for Surface Foundations on Sand. Journal of Geotechnical and Geoenvironmental Engineering, 146(5), 2020, 04020022.
  • Jozsa, V., Estimation and Separation of Preconsolidation Stress Using Triaxial and Oedometer Test in Kiscelli Clay. Periodica Polytechnica Civil Engineering, 60(2), 297-304, 2016.
  • Zelger, J., Calibration of 2D Pre-Relaxation Factors in Tunnelling with 3D Finite Element Calculations, MSc. Thesis. Graz University of Technology, 2012.
  • Melnikov, R., Zazulya, J., Stepanov, M., Ashikkmin, O., Maltseva, T., OCR and POP Parameters in Plaxis-Based Numerical Analysis of Loaded Over Consolidated Soils. Procedia Engineering, 165, 845-852, 2016.
  • Massarsch, K. R., Westerberg, E., Broms, B.B., Footings Supported on Settlement-Reducing Vibrated Soil Nails, Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering, Hamburg/6-12 September 1997, 1533-1539.
  • Holtz, D.R., Kovacs, D.W., An Introduction to Geotechnical Engineering, New Jersey. Prentice-Hall, Inc. Englewood Cliffs, 1981.
  • Cetin, H., An Experimental Study of Soil Memory and Preconsolidation Adjacent to An Active Tectonic Structure: The Meers Fault, Oklahoma, USA. Engineering Geology, 57, 169-178, 2000.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Research Articles
Authors

Erdal Uncuoğlu 0000-0002-6122-9066

Early Pub Date October 26, 2023
Publication Date March 1, 2024
Submission Date March 3, 2023
Published in Issue Year 2024 Volume: 35 Issue: 2

Cite

APA Uncuoğlu, E. (2024). Tabakalı Zeminlerdeki Yüzeysel Temel Davranışının Nümerik ve Analitik Olarak İncelenmesi. Turkish Journal of Civil Engineering, 35(2), 125-156. https://doi.org/10.18400/tjce.1259495
AMA Uncuoğlu E. Tabakalı Zeminlerdeki Yüzeysel Temel Davranışının Nümerik ve Analitik Olarak İncelenmesi. tjce. March 2024;35(2):125-156. doi:10.18400/tjce.1259495
Chicago Uncuoğlu, Erdal. “Tabakalı Zeminlerdeki Yüzeysel Temel Davranışının Nümerik Ve Analitik Olarak İncelenmesi”. Turkish Journal of Civil Engineering 35, no. 2 (March 2024): 125-56. https://doi.org/10.18400/tjce.1259495.
EndNote Uncuoğlu E (March 1, 2024) Tabakalı Zeminlerdeki Yüzeysel Temel Davranışının Nümerik ve Analitik Olarak İncelenmesi. Turkish Journal of Civil Engineering 35 2 125–156.
IEEE E. Uncuoğlu, “Tabakalı Zeminlerdeki Yüzeysel Temel Davranışının Nümerik ve Analitik Olarak İncelenmesi”, tjce, vol. 35, no. 2, pp. 125–156, 2024, doi: 10.18400/tjce.1259495.
ISNAD Uncuoğlu, Erdal. “Tabakalı Zeminlerdeki Yüzeysel Temel Davranışının Nümerik Ve Analitik Olarak İncelenmesi”. Turkish Journal of Civil Engineering 35/2 (March 2024), 125-156. https://doi.org/10.18400/tjce.1259495.
JAMA Uncuoğlu E. Tabakalı Zeminlerdeki Yüzeysel Temel Davranışının Nümerik ve Analitik Olarak İncelenmesi. tjce. 2024;35:125–156.
MLA Uncuoğlu, Erdal. “Tabakalı Zeminlerdeki Yüzeysel Temel Davranışının Nümerik Ve Analitik Olarak İncelenmesi”. Turkish Journal of Civil Engineering, vol. 35, no. 2, 2024, pp. 125-56, doi:10.18400/tjce.1259495.
Vancouver Uncuoğlu E. Tabakalı Zeminlerdeki Yüzeysel Temel Davranışının Nümerik ve Analitik Olarak İncelenmesi. tjce. 2024;35(2):125-56.