Research Article
BibTex RIS Cite

A Quantitative Investigation on the Effects of Flexure-Dominated Reinforced Concrete Column Characteristics on the Dissipated Energy

Year 2024, Volume: 35 Issue: 2, 87 - 102, 01.03.2024
https://doi.org/10.18400/tjce.1272125

Abstract

This paper presents the effects of fundamental member and loading parameters on total dissipated energy capacity of RC columns in quantitative way by using an experimental database. Specifically, concrete compressive strength, yield strength of reinforcing bars; shear span-to-depth ratio, reinforcement ratios; peak drift ratio, and axial load ratio, are considered as influencing factors. Pearson’s correlation coefficients are utilized as dependency indicators to construct a correlation matrix where the effect of each factor on dissipated energy level is quantified. Results show that the effective factors among selected features are peak drift ratio, transverse reinforcement volumetric ratios of a member, and yield strength of rebars whereas the most influencing factors are the first two.

Project Number

121M713

References

  • Gill, W.D., Ductility of Rectangular Reinforced Concrete Columns with Axial Load. University of Canterbury, Department of Civil Engineering, Master of Engineering, 1979.
  • Poljanšek, K., Peruš, I., Fajfar, P., Hysteretic Energy Dissipation Capacity and the Cyclic to Monotonic Drift Ratio for Rectangular RC columns in Flexure. Earthquake Engineering & Structural Dynamics, 38(7), 2009.
  • Acun, B., Sucuoğlu, H., Energy Dissipation Capacity of Reinforced Concrete Columns under Cyclic Displacements. ACI Structural Journal, 109(4), 2012.
  • Rodrigues, H., Furtado, A., Arêde, A., Behavior of Rectangular Reinforced-Concrete Columns Under Biaxial Cyclic Loading and Variable Axial Loads. Journal of Structural Engineering, 142(1), 04015085, 2016.
  • Vu, N.S., Li, B., Tran, C.T.N., Seismic Behavior of Reinforced Concrete Short Columns Subjected to Varying Axial Load. ACI Structural Journal, 119(6), 2022.
  • Yang, S. Y., Song, X. B., Jia, H. X., Chen, X., Liu, X. L., Experimental Research on Hysteretic Behaviors of Corroded Reinforced Concrete Columns with Different Maximum Amounts of Corrosion of Rebar. Construction and Building Materials, 121, 2016.
  • Yalçın, C., Dindar, A. A., Yüksel, E., Özkaynak, H., Büyüköztürk, O., Seismic Design of RC Frame Structures based on Energy-Balance Method. Engineering Structures, 237, 112220, 2021.
  • Browning, J.A., Pujol, S., Eigenmann, R., Ramirez, J.A., NEEShub Databases. Concrete International, https://datacenterhub.org/resources/databases, 2013 (Accessed: 01.10.2021).
  • Rathje, E., Dawson, C. Padgett, J.E., Pinelli, J.-P., Stanzione, D., Adair, A., Arduino, P., Brandenberg, S.J., Cockerill, T., Dey, C., Esteva, M., Haan, Jr., F.L., Hanlon, M., Kareem, A., Lowes, L., Mock, S., Mosqueda, G., DesignSafe: A New Cyberinfrastructure for Natural Hazards Engineering. ASCE Natural Hazards Review, 18(3), 2017.
  • Berry, M., Parrish, M., Eberhard, M., PEER structural performance database user’s manual (version 1.0). University of California, Berkeley, 2004.
  • Haselton, C.B., Assessing Seismic Collapse Safety of Modern Reinforced Concrete Moment Frame Buildings, Stanford University, Doctoral Dissertation, 2006.
  • Liu, Z., Wang, Y., Cao, Z., Chen, Y., Hu, Y., Seismic Energy Dissipation Under Variable Amplitude Loading for Rectangular RC Members in Flexure. Earthquake Engineering & Structural Dynamics, 47(4), 2018.
  • Ibarra, L. F., Medina, R. A., Krawinkler, H., Hysteretic Models that Incorporate Strength and Stiffness Deterioration. Earthquake Engineering & Structural Dynamics, 34(12), 2005.
  • Di Domenico, M., Ricci, P., Verderame, G. M., Empirical Calibration of Hysteretic Parameters for Modelling the Seismic Response of Reinforced Concrete Columns with Plain Bars. Engineering Structures, 237, 112120, 2021.
  • Rodas, P. T., Zareian, F., Kanvinde, A., Hysteretic Model for Exposed Column–Base Connections. Journal of Structural Engineering, 142(12), 04016137, 2016.
  • Horton, T. A., Hajirasouliha, I., Davison, B., Ozdemir, Z., Accurate Prediction of Cyclic Hysteresis Behaviour of RBS Connections Using Deep Learning Neural Networks. Engineering Structures, 247, 113156, 2021.
  • Rayjada, S. P., Raghunandan, M., Ghosh, J., Machine Learning-Based RC Beam-Column Model Parameter Estimation and Uncertainty Quantification for Seismic Fragility Assessment. Engineering Structures, 278, 2023.
  • Luo, H., Paal, S. G., Machine Learning–Based Backbone Curve Model of Reinforced Concrete Columns Subjected to Cyclic Loading Reversals. Journal of Computing in Civil Engineering, 32(5), 2018.
  • Akbaş, B., Jay, S. H. E. N., Depreme Dayanıklı Yapı Tasarımı ve Enerji Kavramı. Teknik Dergi, 14(67), 2003.
  • Merter, O., Bozdağ, Ö., Düzgün, M., Energy-based Design of Steel Structures According to the Predefined Interstory Drift Ratio, Teknik Dergi, 23(115), 1573-1593, 2012.
  • Pearson, K., Notes on the history of correlation. Biometrika, 13(1), 25-45, 1920.
  • Van Rosum, G., Drake, F.L., Python 3 reference manual, CreateSpace, 2009.
  • Waskom, M.L., Seaborn: Statistical Data Visualization. Journal of Open Source Software, 6(60), 2021.
  • Umemura H., Endo, T., Report by Umemura Lab, Tokyo University, 1970.
  • Mo, Y. L., Wang, S. J., Seismic Behavior of RC Columns with Various Tie Configurations. Journal of Structural Engineering, 126(10), 1122-1130, 2000.
  • Atalay, M. B., Penzien, J., The Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment, Shear and Axial Force. Berkeley, CA, USA: Earthquake Engineering Research Center, University of California, 1975.
  • Harries, K. A., Ricles, J. R., Pessiki, S., Sause, R., Seismic Retrofit of Lap Splices in Nonductile Square Columns Using Carbon Fiber-Reinforced Jackets. ACI Structural Journal, 103(6), 874, 2006.
  • Lynn, A. C., Moehle, J. P., Mahin, S. A., Holmes, W. T., Seismic Evaluation of Existing Reinforced Concrete Building Columns. Earthquake Spectra, 12(4), 715-739, 1996.
  • Nosho, K., Stanton, J., MacRae, G., Retrofit of Rectangular Reinforced Concrete Columns Using Tonen Forca Tow Sheet Carbon Fiber Wrapping. Report No. SGEM, 96-2, 1996.
  • Saatcioglu, M., Ozcebe, G., Response of Reinforced Concrete Columns to Simulated Seismic Loading. Structural Journal, 86(1), 3-12, 1989.
  • Sezen, H., Moehle, J. P., Seismic Behavior of Shear-Critical Reinforced Concrete Building Columns. In Seventh US National Conference on Earthquake Engineering, Earthquake Engineering Research Institute, Boston, MA, 2002.
  • Soesianawati, M. T., Limited Ductility Design of Reinforced Concrete Columns, 1986.
  • Tanaka, H., Park, R., Effect of Lateral Confining Reinforcement on the Ductile Behavior of Reinforced Concrete Columns [Report 90-2]. Department of Civil Engineering, University of Canterbury, 1990.
  • Wehbe, N., Saiidi, M.S., Sanders, D., Confinement of Rectangular Bridge Columns for Modrate Seismic Areas. National Center for Earthquake Engineering Research, 1998.
  • Wight, J. K., Sozen, M. A., Shear Strength Decay in Reinforced Concrete Columns Subjected to Large Deflection Reversals. Structural Research Series No. 403. Civil Engineering Studies. Urbana-Champaign (IL): University of Illinois, 1973.
  • Yoshimura, M. Y., Ultimate Limit State of RC Columns. The Second U.S.- Japan Workshop on Performance-Based Earthquake Engineering Methodology, 2000.
  • Zahn, F. A., Priestley, M.J.N., Design of Reinforced Concrete Bridge Columns for Strength and Ductility. Christchurch, New Zealand, University of Canterbury, 1986.

A Quantitative Investigation on the Effects of Flexure-Dominated Reinforced Concrete Column Characteristics on the Dissipated Energy

Year 2024, Volume: 35 Issue: 2, 87 - 102, 01.03.2024
https://doi.org/10.18400/tjce.1272125

Abstract

This paper presents the effects of fundamental member and loading parameters on total dissipated energy capacity of RC columns in quantitative way by using an experimental database. Specifically, concrete compressive strength, yield strength of reinforcing bars; shear span-to-depth ratio, reinforcement ratios; peak drift ratio, and axial load ratio, are considered as influencing factors. Pearson’s correlation coefficients are utilized as dependency indicators to construct a correlation matrix where the effect of each factor on dissipated energy level is quantified. Results show that the effective factors among selected features are peak drift ratio, transverse reinforcement volumetric ratios of a member, and yield strength of rebars whereas the most influencing factors are the first two.

Supporting Institution

Scientific and Technological Research Council of Türkiye, (TÜBİTAK, Turkish Research Foundation)

Project Number

121M713

Thanks

This work has been funded and supported by the Scientific and Technological Research Council of Türkiye, (TÜBİTAK, Turkish Research Foundation), Project ID: 121M713. This support is greatly acknowledged.

References

  • Gill, W.D., Ductility of Rectangular Reinforced Concrete Columns with Axial Load. University of Canterbury, Department of Civil Engineering, Master of Engineering, 1979.
  • Poljanšek, K., Peruš, I., Fajfar, P., Hysteretic Energy Dissipation Capacity and the Cyclic to Monotonic Drift Ratio for Rectangular RC columns in Flexure. Earthquake Engineering & Structural Dynamics, 38(7), 2009.
  • Acun, B., Sucuoğlu, H., Energy Dissipation Capacity of Reinforced Concrete Columns under Cyclic Displacements. ACI Structural Journal, 109(4), 2012.
  • Rodrigues, H., Furtado, A., Arêde, A., Behavior of Rectangular Reinforced-Concrete Columns Under Biaxial Cyclic Loading and Variable Axial Loads. Journal of Structural Engineering, 142(1), 04015085, 2016.
  • Vu, N.S., Li, B., Tran, C.T.N., Seismic Behavior of Reinforced Concrete Short Columns Subjected to Varying Axial Load. ACI Structural Journal, 119(6), 2022.
  • Yang, S. Y., Song, X. B., Jia, H. X., Chen, X., Liu, X. L., Experimental Research on Hysteretic Behaviors of Corroded Reinforced Concrete Columns with Different Maximum Amounts of Corrosion of Rebar. Construction and Building Materials, 121, 2016.
  • Yalçın, C., Dindar, A. A., Yüksel, E., Özkaynak, H., Büyüköztürk, O., Seismic Design of RC Frame Structures based on Energy-Balance Method. Engineering Structures, 237, 112220, 2021.
  • Browning, J.A., Pujol, S., Eigenmann, R., Ramirez, J.A., NEEShub Databases. Concrete International, https://datacenterhub.org/resources/databases, 2013 (Accessed: 01.10.2021).
  • Rathje, E., Dawson, C. Padgett, J.E., Pinelli, J.-P., Stanzione, D., Adair, A., Arduino, P., Brandenberg, S.J., Cockerill, T., Dey, C., Esteva, M., Haan, Jr., F.L., Hanlon, M., Kareem, A., Lowes, L., Mock, S., Mosqueda, G., DesignSafe: A New Cyberinfrastructure for Natural Hazards Engineering. ASCE Natural Hazards Review, 18(3), 2017.
  • Berry, M., Parrish, M., Eberhard, M., PEER structural performance database user’s manual (version 1.0). University of California, Berkeley, 2004.
  • Haselton, C.B., Assessing Seismic Collapse Safety of Modern Reinforced Concrete Moment Frame Buildings, Stanford University, Doctoral Dissertation, 2006.
  • Liu, Z., Wang, Y., Cao, Z., Chen, Y., Hu, Y., Seismic Energy Dissipation Under Variable Amplitude Loading for Rectangular RC Members in Flexure. Earthquake Engineering & Structural Dynamics, 47(4), 2018.
  • Ibarra, L. F., Medina, R. A., Krawinkler, H., Hysteretic Models that Incorporate Strength and Stiffness Deterioration. Earthquake Engineering & Structural Dynamics, 34(12), 2005.
  • Di Domenico, M., Ricci, P., Verderame, G. M., Empirical Calibration of Hysteretic Parameters for Modelling the Seismic Response of Reinforced Concrete Columns with Plain Bars. Engineering Structures, 237, 112120, 2021.
  • Rodas, P. T., Zareian, F., Kanvinde, A., Hysteretic Model for Exposed Column–Base Connections. Journal of Structural Engineering, 142(12), 04016137, 2016.
  • Horton, T. A., Hajirasouliha, I., Davison, B., Ozdemir, Z., Accurate Prediction of Cyclic Hysteresis Behaviour of RBS Connections Using Deep Learning Neural Networks. Engineering Structures, 247, 113156, 2021.
  • Rayjada, S. P., Raghunandan, M., Ghosh, J., Machine Learning-Based RC Beam-Column Model Parameter Estimation and Uncertainty Quantification for Seismic Fragility Assessment. Engineering Structures, 278, 2023.
  • Luo, H., Paal, S. G., Machine Learning–Based Backbone Curve Model of Reinforced Concrete Columns Subjected to Cyclic Loading Reversals. Journal of Computing in Civil Engineering, 32(5), 2018.
  • Akbaş, B., Jay, S. H. E. N., Depreme Dayanıklı Yapı Tasarımı ve Enerji Kavramı. Teknik Dergi, 14(67), 2003.
  • Merter, O., Bozdağ, Ö., Düzgün, M., Energy-based Design of Steel Structures According to the Predefined Interstory Drift Ratio, Teknik Dergi, 23(115), 1573-1593, 2012.
  • Pearson, K., Notes on the history of correlation. Biometrika, 13(1), 25-45, 1920.
  • Van Rosum, G., Drake, F.L., Python 3 reference manual, CreateSpace, 2009.
  • Waskom, M.L., Seaborn: Statistical Data Visualization. Journal of Open Source Software, 6(60), 2021.
  • Umemura H., Endo, T., Report by Umemura Lab, Tokyo University, 1970.
  • Mo, Y. L., Wang, S. J., Seismic Behavior of RC Columns with Various Tie Configurations. Journal of Structural Engineering, 126(10), 1122-1130, 2000.
  • Atalay, M. B., Penzien, J., The Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment, Shear and Axial Force. Berkeley, CA, USA: Earthquake Engineering Research Center, University of California, 1975.
  • Harries, K. A., Ricles, J. R., Pessiki, S., Sause, R., Seismic Retrofit of Lap Splices in Nonductile Square Columns Using Carbon Fiber-Reinforced Jackets. ACI Structural Journal, 103(6), 874, 2006.
  • Lynn, A. C., Moehle, J. P., Mahin, S. A., Holmes, W. T., Seismic Evaluation of Existing Reinforced Concrete Building Columns. Earthquake Spectra, 12(4), 715-739, 1996.
  • Nosho, K., Stanton, J., MacRae, G., Retrofit of Rectangular Reinforced Concrete Columns Using Tonen Forca Tow Sheet Carbon Fiber Wrapping. Report No. SGEM, 96-2, 1996.
  • Saatcioglu, M., Ozcebe, G., Response of Reinforced Concrete Columns to Simulated Seismic Loading. Structural Journal, 86(1), 3-12, 1989.
  • Sezen, H., Moehle, J. P., Seismic Behavior of Shear-Critical Reinforced Concrete Building Columns. In Seventh US National Conference on Earthquake Engineering, Earthquake Engineering Research Institute, Boston, MA, 2002.
  • Soesianawati, M. T., Limited Ductility Design of Reinforced Concrete Columns, 1986.
  • Tanaka, H., Park, R., Effect of Lateral Confining Reinforcement on the Ductile Behavior of Reinforced Concrete Columns [Report 90-2]. Department of Civil Engineering, University of Canterbury, 1990.
  • Wehbe, N., Saiidi, M.S., Sanders, D., Confinement of Rectangular Bridge Columns for Modrate Seismic Areas. National Center for Earthquake Engineering Research, 1998.
  • Wight, J. K., Sozen, M. A., Shear Strength Decay in Reinforced Concrete Columns Subjected to Large Deflection Reversals. Structural Research Series No. 403. Civil Engineering Studies. Urbana-Champaign (IL): University of Illinois, 1973.
  • Yoshimura, M. Y., Ultimate Limit State of RC Columns. The Second U.S.- Japan Workshop on Performance-Based Earthquake Engineering Methodology, 2000.
  • Zahn, F. A., Priestley, M.J.N., Design of Reinforced Concrete Bridge Columns for Strength and Ductility. Christchurch, New Zealand, University of Canterbury, 1986.
There are 37 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Ziya Müderrisoğlu 0000-0003-1220-8047

Ahmet Anıl Dindar 0000-0003-3168-8322

Ali Bozer 0000-0002-3632-2605

Hasan Özkaynak 0000-0003-2880-7669

Ahmet Güllü 0000-0001-6678-9372

Bilal Güngör 0000-0001-6749-2706

Furkan Çalım 0000-0001-8365-9553

Serkan Hasanoğlu This is me 0000-0002-7018-0479

Project Number 121M713
Early Pub Date October 23, 2023
Publication Date March 1, 2024
Submission Date March 28, 2023
Published in Issue Year 2024 Volume: 35 Issue: 2

Cite

APA Müderrisoğlu, Z., Dindar, A. A., Bozer, A., Özkaynak, H., et al. (2024). A Quantitative Investigation on the Effects of Flexure-Dominated Reinforced Concrete Column Characteristics on the Dissipated Energy. Turkish Journal of Civil Engineering, 35(2), 87-102. https://doi.org/10.18400/tjce.1272125
AMA Müderrisoğlu Z, Dindar AA, Bozer A, Özkaynak H, Güllü A, Güngör B, Çalım F, Hasanoğlu S. A Quantitative Investigation on the Effects of Flexure-Dominated Reinforced Concrete Column Characteristics on the Dissipated Energy. TJCE. March 2024;35(2):87-102. doi:10.18400/tjce.1272125
Chicago Müderrisoğlu, Ziya, Ahmet Anıl Dindar, Ali Bozer, Hasan Özkaynak, Ahmet Güllü, Bilal Güngör, Furkan Çalım, and Serkan Hasanoğlu. “A Quantitative Investigation on the Effects of Flexure-Dominated Reinforced Concrete Column Characteristics on the Dissipated Energy”. Turkish Journal of Civil Engineering 35, no. 2 (March 2024): 87-102. https://doi.org/10.18400/tjce.1272125.
EndNote Müderrisoğlu Z, Dindar AA, Bozer A, Özkaynak H, Güllü A, Güngör B, Çalım F, Hasanoğlu S (March 1, 2024) A Quantitative Investigation on the Effects of Flexure-Dominated Reinforced Concrete Column Characteristics on the Dissipated Energy. Turkish Journal of Civil Engineering 35 2 87–102.
IEEE Z. Müderrisoğlu, A. A. Dindar, A. Bozer, H. Özkaynak, A. Güllü, B. Güngör, F. Çalım, and S. Hasanoğlu, “A Quantitative Investigation on the Effects of Flexure-Dominated Reinforced Concrete Column Characteristics on the Dissipated Energy”, TJCE, vol. 35, no. 2, pp. 87–102, 2024, doi: 10.18400/tjce.1272125.
ISNAD Müderrisoğlu, Ziya et al. “A Quantitative Investigation on the Effects of Flexure-Dominated Reinforced Concrete Column Characteristics on the Dissipated Energy”. Turkish Journal of Civil Engineering 35/2 (March 2024), 87-102. https://doi.org/10.18400/tjce.1272125.
JAMA Müderrisoğlu Z, Dindar AA, Bozer A, Özkaynak H, Güllü A, Güngör B, Çalım F, Hasanoğlu S. A Quantitative Investigation on the Effects of Flexure-Dominated Reinforced Concrete Column Characteristics on the Dissipated Energy. TJCE. 2024;35:87–102.
MLA Müderrisoğlu, Ziya et al. “A Quantitative Investigation on the Effects of Flexure-Dominated Reinforced Concrete Column Characteristics on the Dissipated Energy”. Turkish Journal of Civil Engineering, vol. 35, no. 2, 2024, pp. 87-102, doi:10.18400/tjce.1272125.
Vancouver Müderrisoğlu Z, Dindar AA, Bozer A, Özkaynak H, Güllü A, Güngör B, Çalım F, Hasanoğlu S. A Quantitative Investigation on the Effects of Flexure-Dominated Reinforced Concrete Column Characteristics on the Dissipated Energy. TJCE. 2024;35(2):87-102.