Research Article
BibTex RIS Cite

Ülkemiz Mühendislik Uygulamalarında Çelik Çatı Sistemlerinin Optimum Tasarımına Dair İnceleme

Year 2025, Volume: 36 Issue: 3
https://doi.org/10.18400/tjce.1543461

Abstract

Bu çalışmada, ülkemiz mühendislik uygulamalarında büyük açıklıklı çelik çatı sistemlerinin ne kadar optimum tasarlandığına dair bir inceleme yapılmaktadır. Bu amaçla, Türkiye’nin çeşitli bölgelerinde inşa edilmiş üç kapalı yüzme havuzuna ait çelik çatı sistemlerinin optimum boyutlandırılması, kaotik kapasite kontrollü arama (kaotik-KKA) yöntemi kullanılarak gerçekleştirilmiş ve elde edilen optimum tasarımlar bu sistemlerin daha önceden proje firmaları tarafından geleneksel mühendislik yöntemleri kullanılarak oluşturulan orijinal tasarımları ile karşılaştırılmıştır. Bu karşılaştırmalar neticesinde, büyük açıklıklı çelik çatı sistemlerinin tasarım aşamalarında yapı optimizasyonu yöntemlerinin kullanılması ile, yapı ağırlığında ve dolayısıyla maliyetinde, orijinal tasarımlara göre %10-40 oranında tasarruf sağlanabileceği tespit edilmiştir. Büyük açıklıklı çatı sistemlerinde çelik kullanımının azaltılması sadece malzeme masraflarını değil, aynı zamanda nakliye ve imalat maliyetlerini de düşürecektir. Bunun yanı sıra, çelik endüstrisinin çevresel zararlarını da azaltarak sürdürülebilirliğe katkı sağlayacaktır.

References

  • Erbatur, F., Al-Hussainy, M. M. Optimum Design of Frames. Computers & Structures, 45, 887-91, 1992.
  • Tabak E. I., Wright, P. M. Optimality Criteria Method for Building Frames. Journal of Structural Division, ASCE, 107, 1327–1342, 1981.
  • Saka, M. P. Optimum Design of Steel Frames with Stability Constraints. Computers & Structures, 41, 1365-1377, 1991.
  • Goldberg, D. E. Samtani M. P., Engineering Optimization via Genetic Algorithm. In: Proceeding of the Ninth Conference on Electronic Computation, ASCE, 471-482, 1986.
  • Kirkpatrick, S., Gerlatt, C. D., Vecchi, M.P. Optimization by Simulated Annealing. Science, 220, 671-80, 1983.
  • Kennedy, J., Eberhart, R. Particle Swarm Optimization. In: IEEE İnternational Conference on Neural Networks, IEEE Press, 1942-1948, 1995.
  • Colorni A., Dorigo, M., Maniezzo, V. Distributed Optimization by Ant Colony. In: Proceedings of the First European Conference on Artificial Life, USA, 134-142, 1991.
  • Lee, K. S., Geem, Z. W. A New Structural Optimization Method Based On The Harmony Search Algorithm. Computers & Structures, 82, 781-798, 2004.
  • Toğan, V., Daloğlu, A. Genetik Algoritma ile Üç Boyutlu Kafes Sistemlerin Şekil ve Boyut Optimizasyonu. Teknik Dergi, 17(82), 3809-3825, 2006.
  • Hasançebi, O., Azad, S. K. An Exponential Big Bang-Big Crunch Algorithm For Discrete Design Optimization of Steel Frames. Computers & Structures, 110, 167-179, 2012.
  • Gandomi, A. H., Yang, X. S., Alavi, A. H. Cuckoo Search Algorithm: A Metaheuristic Approach to Solve Structural Optimization Problems. Engineering with Computers, 29, 17-35, 2013.
  • Artar, M., Daloğlu, A. Çok Katlı Kompozit Çelik Çerçevelerin Genetik Algoritma ile Dinamik Sınırlayıcılı Optimizasyonu. Teknik Dergi, 26(2), 2015.
  • Askarzadeh, A. A Novel Metaheuristic Method for Solving Constrained Engineering Optimization Problems: Crow Search Algorithm. Computers & Structures, 169, 1-12, 2016.
  • Mirjalili, S., Lewis, A. The Whale Optimization Algorithm. Advances in Engineering Software, 95, 51-67, 2016.
  • Karabörk, T., Sönmez, M., Aydın, E., Çelik, T., Bölükbaş, Y. Çelik Yapılarda Kullanılan Diyagonal Çelik Çaprazların Yapay Arı Koloni Algoritması ile Optimizasyonu. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(1), 51-64, 2018.
  • Degertekin, S. O., Lamberti, L., Ugur, I. B. Sizing, Layout and Topology Design Optimization of Truss Structures Using the Jaya Algorithm. Applied Soft Computing, 70, 903-928, 2018.
  • Bekdaş, G., Yucel, M., Nigdeli, S. M. Evaluation of Metaheuristic-Based Methods for Optimization of Truss Structures via Various Algorithms And Lèvy Flight Modification. Buildings, 11(2), 49, 2021.
  • Chan, C. M. Optimal Lateral Stiffness Design of Tall Buildings of Mixed Steel and Concrete Construction. Structural Design of Tall Buildings, 10(3), 155–77, 2001.
  • Elvin A, Walls R, Cromberge D. Optimising Structures Using the Principle of Virtual Work. Journal of the South African Institution of Civil Engineering, 51(2), 11–9, 2009.
  • Azad, S. K., Hasançebi, O. Computationally Efficient Discrete Sizing of Steel Frames via Guided Stochastic Search Heuristic. Computers & Structures, 156, 12-28, 2015.
  • Walls R, Elvin A. Optimizing Structures Subject to Multiple Deflection Constraints and Load Cases Using the Principle Of Virtual Work. Journal of Structural Engineering, 136(11), 1444–52, 2010.
  • Flager, F., Soremekun, G., Adya, A., Shea, K., Haymaker, J., Fischer, M. Fully Constrained Design: A General and Scalable Method for Discrete Member Sizing Optimization of Steel Truss Structures. Computers & Structures, 140, 55-65, 2014.
  • Kociecki, M., Adeli, H. Two-Phase Genetic Algorithm for Size Optimization of Free-Form Steel Space-Frame Roof Structures. Journal of Constructional Steel Research, 90, 283-296, 2013.
  • Dillen, W., Lombaert, G., Mertens, R., Van Beurden, H., Jaspaert, D., Schevenels, M. Optimization in A Realistic Structural Engineering Context: Redesign of The Market Hall in Ghent. Engineering Structures, 228, 111473, 2021.
  • De Souza, R. R., Miguel, L. F. F., Lopez, R. H., Miguel, L. F. F., Torii, A. J. A Procedure for the Size, Shape and Topology Optimization of Transmission Line Tower Structures. Engineering Structures, 111, 162-184, 2016.
  • Luna, F., Zavala, G. R., Nebro, A. J., Durillo, J. J., Coello, C. A. C. Distributed Multi-Objective Metaheuristics for Real-World Structural Optimization Problems. The Computer Journal, 59(6), 777-792, 2016.
  • Lagaros, N. D. A General Purpose Real-World Structural Design Optimization Computing Platform. Structural and Multidisciplinary Optimization, 49, 1047-1066, 2014.
  • Eser, H., Hasançebi, O., Gholizadeh, S. Optimizing Real-World Steel Structures: A Comparison with Design Office Solutions. Practice Periodical on Structural Design and Construction, ASCE, Under Review, 2024.
  • T. C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı. Çelik Yapıların Tasarım, Hesap ve Yapımına Dair Esaslar, 2018.
  • Eser, H., Hasançebi, O. Capacity Controlled Search: A New and Efficient Design-Driven Method for Discrete Size Optimization of Steel Frames. Computers & Structures, 275, 106937, 2023.
  • Computers and Structures Inc. SAP2000 version: 21.0.2. Berkeley, California, 2019.
  • AISC 360-10. Specification for Structural Steel Buildings. American Institute of Steel Construction. Chicago, Illinois, 2010.
  • MathWorks Inc. MATLAB version: 9.14.0 (R2023a), Natick, Massachusetts, 2023.

A Study on the Optimum Design of Steel Roof Systems in Turkish Engineering Practice

Year 2025, Volume: 36 Issue: 3
https://doi.org/10.18400/tjce.1543461

Abstract

In this study, an investigation is conducted on how optimally large span steel roof systems are designed in Turkish engineering practice. For this purpose, the optimum sizing of the steel roofs of three indoor swimming pools constructed in different regions of Turkey was performed using the chaotic capacity controlled search (Chaotic-CCS) method and the obtained optimum designs were compared with the original designs of these systems by design office engineers using conventional design approach. As a result, it was determined that the use of structural optimization methods in the design phase of large span steel roof systems will reduce structural weight about 10-40% and thus the cost of structures compared to the original designs. Reducing the use of steel in large span roof systems will not only reduce material costs, but also transportation and construction costs. It will also contribute to sustainability by reducing the impact of the steel industry on the environment.

References

  • Erbatur, F., Al-Hussainy, M. M. Optimum Design of Frames. Computers & Structures, 45, 887-91, 1992.
  • Tabak E. I., Wright, P. M. Optimality Criteria Method for Building Frames. Journal of Structural Division, ASCE, 107, 1327–1342, 1981.
  • Saka, M. P. Optimum Design of Steel Frames with Stability Constraints. Computers & Structures, 41, 1365-1377, 1991.
  • Goldberg, D. E. Samtani M. P., Engineering Optimization via Genetic Algorithm. In: Proceeding of the Ninth Conference on Electronic Computation, ASCE, 471-482, 1986.
  • Kirkpatrick, S., Gerlatt, C. D., Vecchi, M.P. Optimization by Simulated Annealing. Science, 220, 671-80, 1983.
  • Kennedy, J., Eberhart, R. Particle Swarm Optimization. In: IEEE İnternational Conference on Neural Networks, IEEE Press, 1942-1948, 1995.
  • Colorni A., Dorigo, M., Maniezzo, V. Distributed Optimization by Ant Colony. In: Proceedings of the First European Conference on Artificial Life, USA, 134-142, 1991.
  • Lee, K. S., Geem, Z. W. A New Structural Optimization Method Based On The Harmony Search Algorithm. Computers & Structures, 82, 781-798, 2004.
  • Toğan, V., Daloğlu, A. Genetik Algoritma ile Üç Boyutlu Kafes Sistemlerin Şekil ve Boyut Optimizasyonu. Teknik Dergi, 17(82), 3809-3825, 2006.
  • Hasançebi, O., Azad, S. K. An Exponential Big Bang-Big Crunch Algorithm For Discrete Design Optimization of Steel Frames. Computers & Structures, 110, 167-179, 2012.
  • Gandomi, A. H., Yang, X. S., Alavi, A. H. Cuckoo Search Algorithm: A Metaheuristic Approach to Solve Structural Optimization Problems. Engineering with Computers, 29, 17-35, 2013.
  • Artar, M., Daloğlu, A. Çok Katlı Kompozit Çelik Çerçevelerin Genetik Algoritma ile Dinamik Sınırlayıcılı Optimizasyonu. Teknik Dergi, 26(2), 2015.
  • Askarzadeh, A. A Novel Metaheuristic Method for Solving Constrained Engineering Optimization Problems: Crow Search Algorithm. Computers & Structures, 169, 1-12, 2016.
  • Mirjalili, S., Lewis, A. The Whale Optimization Algorithm. Advances in Engineering Software, 95, 51-67, 2016.
  • Karabörk, T., Sönmez, M., Aydın, E., Çelik, T., Bölükbaş, Y. Çelik Yapılarda Kullanılan Diyagonal Çelik Çaprazların Yapay Arı Koloni Algoritması ile Optimizasyonu. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(1), 51-64, 2018.
  • Degertekin, S. O., Lamberti, L., Ugur, I. B. Sizing, Layout and Topology Design Optimization of Truss Structures Using the Jaya Algorithm. Applied Soft Computing, 70, 903-928, 2018.
  • Bekdaş, G., Yucel, M., Nigdeli, S. M. Evaluation of Metaheuristic-Based Methods for Optimization of Truss Structures via Various Algorithms And Lèvy Flight Modification. Buildings, 11(2), 49, 2021.
  • Chan, C. M. Optimal Lateral Stiffness Design of Tall Buildings of Mixed Steel and Concrete Construction. Structural Design of Tall Buildings, 10(3), 155–77, 2001.
  • Elvin A, Walls R, Cromberge D. Optimising Structures Using the Principle of Virtual Work. Journal of the South African Institution of Civil Engineering, 51(2), 11–9, 2009.
  • Azad, S. K., Hasançebi, O. Computationally Efficient Discrete Sizing of Steel Frames via Guided Stochastic Search Heuristic. Computers & Structures, 156, 12-28, 2015.
  • Walls R, Elvin A. Optimizing Structures Subject to Multiple Deflection Constraints and Load Cases Using the Principle Of Virtual Work. Journal of Structural Engineering, 136(11), 1444–52, 2010.
  • Flager, F., Soremekun, G., Adya, A., Shea, K., Haymaker, J., Fischer, M. Fully Constrained Design: A General and Scalable Method for Discrete Member Sizing Optimization of Steel Truss Structures. Computers & Structures, 140, 55-65, 2014.
  • Kociecki, M., Adeli, H. Two-Phase Genetic Algorithm for Size Optimization of Free-Form Steel Space-Frame Roof Structures. Journal of Constructional Steel Research, 90, 283-296, 2013.
  • Dillen, W., Lombaert, G., Mertens, R., Van Beurden, H., Jaspaert, D., Schevenels, M. Optimization in A Realistic Structural Engineering Context: Redesign of The Market Hall in Ghent. Engineering Structures, 228, 111473, 2021.
  • De Souza, R. R., Miguel, L. F. F., Lopez, R. H., Miguel, L. F. F., Torii, A. J. A Procedure for the Size, Shape and Topology Optimization of Transmission Line Tower Structures. Engineering Structures, 111, 162-184, 2016.
  • Luna, F., Zavala, G. R., Nebro, A. J., Durillo, J. J., Coello, C. A. C. Distributed Multi-Objective Metaheuristics for Real-World Structural Optimization Problems. The Computer Journal, 59(6), 777-792, 2016.
  • Lagaros, N. D. A General Purpose Real-World Structural Design Optimization Computing Platform. Structural and Multidisciplinary Optimization, 49, 1047-1066, 2014.
  • Eser, H., Hasançebi, O., Gholizadeh, S. Optimizing Real-World Steel Structures: A Comparison with Design Office Solutions. Practice Periodical on Structural Design and Construction, ASCE, Under Review, 2024.
  • T. C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı. Çelik Yapıların Tasarım, Hesap ve Yapımına Dair Esaslar, 2018.
  • Eser, H., Hasançebi, O. Capacity Controlled Search: A New and Efficient Design-Driven Method for Discrete Size Optimization of Steel Frames. Computers & Structures, 275, 106937, 2023.
  • Computers and Structures Inc. SAP2000 version: 21.0.2. Berkeley, California, 2019.
  • AISC 360-10. Specification for Structural Steel Buildings. American Institute of Steel Construction. Chicago, Illinois, 2010.
  • MathWorks Inc. MATLAB version: 9.14.0 (R2023a), Natick, Massachusetts, 2023.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Steel Structures , Structural Engineering
Journal Section Research Articles
Authors

Hasan Eser 0000-0001-8527-020X

Oğuzhan Hasançebi 0000-0002-5501-1079

Early Pub Date November 21, 2024
Publication Date
Submission Date September 4, 2024
Acceptance Date November 15, 2024
Published in Issue Year 2025 Volume: 36 Issue: 3

Cite

APA Eser, H., & Hasançebi, O. (2024). Ülkemiz Mühendislik Uygulamalarında Çelik Çatı Sistemlerinin Optimum Tasarımına Dair İnceleme. Turkish Journal of Civil Engineering, 36(3). https://doi.org/10.18400/tjce.1543461
AMA Eser H, Hasançebi O. Ülkemiz Mühendislik Uygulamalarında Çelik Çatı Sistemlerinin Optimum Tasarımına Dair İnceleme. TJCE. November 2024;36(3). doi:10.18400/tjce.1543461
Chicago Eser, Hasan, and Oğuzhan Hasançebi. “Ülkemiz Mühendislik Uygulamalarında Çelik Çatı Sistemlerinin Optimum Tasarımına Dair İnceleme”. Turkish Journal of Civil Engineering 36, no. 3 (November 2024). https://doi.org/10.18400/tjce.1543461.
EndNote Eser H, Hasançebi O (November 1, 2024) Ülkemiz Mühendislik Uygulamalarında Çelik Çatı Sistemlerinin Optimum Tasarımına Dair İnceleme. Turkish Journal of Civil Engineering 36 3
IEEE H. Eser and O. Hasançebi, “Ülkemiz Mühendislik Uygulamalarında Çelik Çatı Sistemlerinin Optimum Tasarımına Dair İnceleme”, TJCE, vol. 36, no. 3, 2024, doi: 10.18400/tjce.1543461.
ISNAD Eser, Hasan - Hasançebi, Oğuzhan. “Ülkemiz Mühendislik Uygulamalarında Çelik Çatı Sistemlerinin Optimum Tasarımına Dair İnceleme”. Turkish Journal of Civil Engineering 36/3 (November 2024). https://doi.org/10.18400/tjce.1543461.
JAMA Eser H, Hasançebi O. Ülkemiz Mühendislik Uygulamalarında Çelik Çatı Sistemlerinin Optimum Tasarımına Dair İnceleme. TJCE. 2024;36. doi:10.18400/tjce.1543461.
MLA Eser, Hasan and Oğuzhan Hasançebi. “Ülkemiz Mühendislik Uygulamalarında Çelik Çatı Sistemlerinin Optimum Tasarımına Dair İnceleme”. Turkish Journal of Civil Engineering, vol. 36, no. 3, 2024, doi:10.18400/tjce.1543461.
Vancouver Eser H, Hasançebi O. Ülkemiz Mühendislik Uygulamalarında Çelik Çatı Sistemlerinin Optimum Tasarımına Dair İnceleme. TJCE. 2024;36(3).