Experimental and Numerical Investigation on Strengthening Techniques for Double-Wythe Stone Masonry Walls
Year 2025,
Volume: 36 Issue: 4
Bilge Doran
,
Yasin Murat Hothot
,
Burcu Dinç-şengönül
,
Metin Karslıoğlu
,
Serhan Ulukaya
,
Nabi Yüzer
Abstract
Masonry structures represent the architectural and cultural heritage of great historical importance. They have been used for public and residential buildings for several thousand years. Many well-preserved old masonry structures still exist, proving that this construction can overcome loads and environmental impact. These structures have been exposed to lateral and vertical loads and atmospheric influences throughout their lives. In masonry structures, undesirable damage, cracks, and voids may occur due to environmental factors or various natural disasters, such as earthquakes, which may cause the structure to collapse. Different conventional strengthening techniques are available depending on the purpose required for stone masonry walls. This study aims to evaluate the structural behavior of double-wythe travertine stone masonry walls strengthened by carbon fiber reinforced polymer (CFRP). For this purpose, two masonry stone walls, which are made of saw-cut travertine stones and constructed with English bond, a pattern formed by laying alternate courses of stretchers and headers, were constructed and tested under in-plane monotonic lateral load and constant axial load. Lateral load-displacement relations and failure mechanisms were discussed. In addition, triaxial compression tests of stone, mortar, grout, and stone-mortar composite materials were performed to determine constitutive relationships. Furthermore, three-dimensional (3D) nonlinear finite element analysis (NLFEA) of stone masonry walls using the Drucker-Prager (DP) yield criterion was performed for unstrengthened stone masonry walls and strengthened ones with grout injection and CFRP. The study findings revealed that the proposed numerical modeling approach can accurately predict the experimental lateral load-displacement behavior of both strengthened and unstrengthened specimens subjected to in-plane combined axial loading and shear. Additionally, the model demonstrated its capability to simulate the experimental load-displacement and cracking patterns effectively.
Supporting Institution
This study was supported by Yildiz Technical University Research Foundation (Project No: FDK-2021-4482) and Turkish Higher Education Institution (YÖK) 100/2000 doctoral project.
References
- L. G. Baltazar, F. M. A. Henriques, and M. T. Cidade, “Experimental Study and Modeling of Rheological and Mechanical Properties of NHL Grouts,” Journal of Materials in Civil Engineering, vol. 27, no. 12, pp. 1–11, Dec. 2015, doi: 10.1061/(ASCE)MT.1943-5533.0001320.
- B. Doran, H. Orhun Koksal, S. Aktan, S. Ulukaya, D. Oktay, and N. Yuzer, “In-Plane Shear Behavior of Traditional Masonry Walls,” International Journal of Architectural Heritage, vol. 11, no. 2, pp. 278–291, Feb. 2017, doi: 10.1080/15583058.2016.1207114.
- P. B. Lourenço, D. V. Oliveira, P. Roca, and A. Orduña, “Dry Joint Stone Masonry Walls Subjected to In-Plane Combined Loading,” Journal of Structural Engineering, vol. 131, no. 11, pp. 1665–1673, Nov. 2005, doi: 10.1061/(ASCE)0733-9445(2005)131:11(1665).
- P. B. Lourenço, “Computational strategies for masonry structures,” Doctoral Thesis, 1996.
- M. Ashraf, A. N. Khan, A. Naseer, Q. Ali, and B. Alam, “Seismic Behavior of Unreinforced and Confined Brick Masonry Walls Before and After Ferrocement Overlay Retrofitting,” International Journal of Architectural Heritage, vol. 6, no. 6, pp. 665–688, Nov. 2012, doi: 10.1080/15583058.2011.599916.
- A. Borri, G. Castori, and M. Corradi, “Shear behavior of masonry panels strengthened by high strength steel cords,” Constr Build Mater, vol. 25, no. 2, pp. 494–503, Feb. 2011, doi: 10.1016/j.conbuildmat.2010.05.014.
- B. Doran, N. Yuzer, S. Aktan, D. Oktay, and S. Ulukaya, “Numerical Modeling of Traditional Masonry Walls Strengthened with Grout Injection,” International Journal of Architectural Heritage, vol. 14, no. 10, pp. 1517–1532, Nov. 2020, doi: 10.1080/15583058.2019.1618970.
- Z. Multazam, K. Yamamoto, K. Timsina, C. K. Gadagamma, and K. Meguro, “Shaking table tests of a one-quarter scale model of concrete hollow block masonry houses retrofitted with fiber-reinforced paint,” Sci Rep, vol. 14, no. 1, p. 8041, Apr. 2024, doi: 10.1038/s41598-024-58365-4.
- M. A. Elgawady and P. Lestuzzi, “A review of conventional seismic retrofitting techniques for URM,” 13th International Brick and Block Masonry Conference, no. January, pp. 1–10, 2004.
- M. Godio, F. Vanin, S. Zhang, and K. Beyer, “Quasi-static shear-compression tests on stone masonry walls with plaster: Influence of load history and axial load ratio,” Eng Struct, vol. 192, pp. 264–278, Aug. 2019, doi: 10.1016/j.engstruct.2019.04.041.
- M. ElGawady, M., Lestuzzi, P., Badoux, “A Review of Retrofitting of URM Walls Using Composites,” in 4th International Conference on Advanced Composite Materials in Bridges and Structures, Calgary, Alberta, 2004.
- M. Elgawady, “Seismic in-plane behavior of URM walls upgraded with composites,” 2004. doi: 10.5075/epfl-thesis-3111.
- T. C. Triantafillou, “Composites: a new possibility for the shear strengthening of concrete, masonry and wood,” Compos Sci Technol, vol. 58, no. 8, pp. 1285–1295, Aug. 1998, doi: 10.1016/S0266-3538(98)00017-7.
- M. Uranjek, V. Bosiljkov, R. Žarnić, and V. Bokan-Bosiljkov, “In situ tests and seismic assessment of a stone-masonry building,” Mater Struct, vol. 45, no. 6, pp. 861–879, Jun. 2012, doi: 10.1617/s11527-011-9804-z.
- B. Dinç-Şengönül, D. Oktay, and N. Yüzer, “Effect of temperature, resting time and brick dust (Horasan) on the rheological properties of hydraulic lime-based grouts,” Constr Build Mater, vol. 265, p. 120644, 2020, doi: 10.1016/j.conbuildmat.2020.120644.
- B. Dinç-Şengönül, M. Bayram, D. Oktay, and N. Yüzer, “Valorization of Cappadocia waste earth in the production of sustainable lime-based grouts,” Sustain Chem Pharm, vol. 38, p. 101503, Apr. 2024, doi: 10.1016/j.scp.2024.101503.
- L. G. Baltazar and F. M. A. Henriques, “Rheology of Grouts for Masonry Injection,” Key Eng Mater, vol. 624, pp. 283–290, Sep. 2014, doi: 10.4028/www.scientific.net/KEM.624.283.
- L. G. Baltazar, F. M. A. Henriques, D. Rocha, and M. T. Cidade, “Experimental Characterization of Injection Grouts Incorporating Hydrophobic Silica Fume,” Journal of Materials in Civil Engineering, vol. 29, no. 10, Oct. 2017, doi: 10.1061/(ASCE)MT.1943-5533.0002021.
- L. G. Baltazar, F. M. A. Henriques, and F. Jorne, “Optimisation of flow behaviour and stability of superplasticized fresh hydraulic lime grouts through design of experiments,” Constr Build Mater, vol. 35, pp. 838–845, Oct. 2012, doi: 10.1016/j.conbuildmat.2012.04.084.
- L. G. Baltazar, F. M. A. Henriques, and M. T. Cidade, “Contribution To the Design Of Hydraulic Lime-Based Grouts For Masonry Consolidation,” Journal of Civil Engineering and Management, vol. 21, no. 6, pp. 698–709, Jun. 2015, doi: 10.3846/13923730.2014.893918.
- E. Luso and P. B. Lourenço, “Experimental laboratory design of lime based grouts for masonry consolidation,” International Journal of Architectural Heritage, pp. 1–10, Jul. 2017, doi: 10.1080/15583058.2017.1354095.
- D. V. Bompa and A. Y. Elghazouli, “Shear-Compression Failure Envelopes for Clay Brick Lime Mortar Masonry Under Wet and Dry Conditions,” 2022, pp. 175–185. doi: 10.1007/978-3-030-90788-4_17.
- M. R. Valluzzi, F. da Porto, and C. Modena, “Behavior and modeling of strengthened three-leaf stone masonry walls,” Mater Struct, vol. 37, no. 3, pp. 184–192, Apr. 2004, doi: 10.1007/BF02481618.
- G. Vasconcelos and P. B. Lourenço, “Experimental characterization of stone masonry in shear and compression,” Constr Build Mater, vol. 23, no. 11, pp. 3337–3345, 2009, doi: 10.1016/j.conbuildmat.2009.06.045.
- M. Abdel-Mooty, A. Al Attar, and M. El Tahawy, “Experimental evaluation of stone masonry walls with lime based mortar under vertical loads,” Structural Studies, Repairs and Maintenance of Heritage Architecture XII, vol. 118, pp. 401–412, Sep. 2011, doi: 10.2495/STR110331.
- D. V. Oliveira, R. A. Silva, E. Garbin, and P. B. Lourenço, “Strengthening of three-leaf stone masonry walls: an experimental research,” Mater Struct, vol. 45, no. 8, pp. 1259–1276, Aug. 2012, doi: 10.1617/s11527-012-9832-3.
- A. Rezaie, M. Godio, and K. Beyer, “Experimental investigation of strength, stiffness and drift capacity of rubble stone masonry walls,” Constr Build Mater, vol. 251, p. 118972, Aug. 2020, doi: 10.1016/j.conbuildmat.2020.118972.
- L. Estevan, F. J. Baeza, D. Bru, and S. Ivorra, “Stone masonry confinement with FRP and FRCM composites,” Constr Build Mater, vol. 237, p. 117612, Mar. 2020, doi: 10.1016/j.conbuildmat.2019.117612.
- A. Sandoli, B. Ferracuti, and B. Calderoni, “FRP-confined tuff masonry columns: regular and irregular stone arrangement,” Compos B Eng, vol. 162, pp. 621–630, Apr. 2019, doi: 10.1016/j.compositesb.2019.01.015.
- A. Rahman and T. Ueda, “Experimental Investigation and Numerical Modeling of Peak Shear Stress of Brick Masonry Mortar Joint under Compression,” Journal of Materials in Civil Engineering, vol. 26, no. 9, Sep. 2014, doi: 10.1061/(ASCE)MT.1943-5533.0000958.
- G. Milani, T. Rotunno, E.Sacco, and A. Tralli, “Failure load of Frp strengthened masonry walls: Experimental results and numerical models,” SID Structural Integrity and Durability, vol. 2, no. 1, pp. 29–50, 2006.
- A. Ghobarah and K. El Mandooh Galal, “Out-of-Plane Strengthening of Unreinforced Masonry Walls with Openings,” Journal of Composites for Construction, vol. 8, no. 4, pp. 298–305, 2004, doi: 10.1061/(asce)1090-0268(2004)8:4(298).
- B. Bozyigit et al., “Damage to monumental masonry buildings in Hatay and Osmaniye following the 2023 Turkey earthquake sequence: The role of wall geometry, construction quality, and material properties,” Earthquake Spectra, vol. 40, no. 3, pp. 1870–1904, Aug. 2024, doi: 10.1177/87552930241247031.
- A. Bayraktar, N. Coşkun, and A. Yalçin, “Performance of Masonry Stone Buildings during the March 25 and 28, 2004 Aşkale (Erzurum) Earthquakes in Turkey,” Journal of Performance of Constructed Facilities, vol. 21, no. 6, pp. 432–440, Dec. 2007, doi: 10.1061/(ASCE)0887-3828(2007)21:6(432).
- C. Demir and A. Ilki, “Characterization of the materials used in the multi-leaf masonry walls of monumental structures in Istanbul, Turkey,” Constr Build Mater, vol. 64, pp. 398–413, Aug. 2014, doi: 10.1016/j.conbuildmat.2014.04.099.
- A. Bayraktar, N. CoŞkun, and A. Yalçin, “Damages of masonry buildings during the July 2, 2004 Doğubayazıt (Ağrı) earthquake in Turkey,” Eng Fail Anal, vol. 14, no. 1, pp. 147–157, Jan. 2007, doi: 10.1016/j.engfailanal.2005.11.011.
- B. Dinç-Şengönül, N. Yüzer, C. Şengönül, S. Ulukaya, D. Oktay, and Ö. Ündül, “Behavior of grout injected solid stone masonry walls under in-plane loading,” Structures, vol. 58, p. 105411, Dec. 2023, doi: 10.1016/j.istruc.2023.105411.
- General Directorate of Highways B.D.H.B.B., Historical Bridges, No: 268. Ankara, 2009.
- N. Mazzon, “Infuence of Grout Injection on the Dynamic Behaviour of Stone Masonry Buildings,” 2010.
- M. Ponte, J. Milosevic, and R. Bento, “Parametrical study of rubble stone masonry panels through numerical modelling of the in-plane behaviour,” Bulletin of Earthquake Engineering, vol. 17, no. 3, pp. 1553–1574, Mar. 2019, doi: 10.1007/s10518-018-0511-9.
- B. Silva, M. Dalla Benetta, F. da Porto, and C. Modena, “Experimental assessment of in-plane behaviour of three-leaf stone masonry walls,” Constr Build Mater, vol. 53, pp. 149–161, Feb. 2014, doi: 10.1016/j.conbuildmat.2013.11.084.
- G. Vasconcelos and P. B. Lourenço, “In-Plane Experimental Behavior of Stone Masonry Walls under Cyclic Loading,” Journal of Structural Engineering, vol. 135, no. 10, pp. 1269–1277, Oct. 2009, doi: 10.1061/(ASCE)ST.1943-541X.0000053.
- EN 1015-11, Methods of test for mortar for masonry - Determination of flexural and compressive strength of hardened mortar. 2019.
- EN 13286-43, Unbound and hydraulically bound mixtures - Part 43: Test method for the determination of the modulus of elasticity of hydraulically bound mixtures. 2017.
- E. Y. Gökyiğit-Arpaci, D. Oktay, N. Yüzer, S. Ulukaya, and D. Ekşi-Akbulut, “Performance Evaluation of Lime-Based Grout Used for Consolidation of Brick Masonry Walls,” Journal of Materials in Civil Engineering, vol. 31, no. 6, Jun. 2019, doi: 10.1061/(ASCE)MT.1943-5533.0002692.
- TS EN 1926, Natural stone test methods- Determination of compressive strength. 2007.
- TS EN 12372, Natural stone test methods- Determination of flexural strength under concentrated load. 2007.
- BS EN 1771, Products and systems for the protection and repair of concrete structures. Test methods. Determination of injectability and splitting test. British Standards. 3. 2004.
- B. Biçer-şimşir, I. Griffin, B. Palazzo-Bertholon, and L. Rainer, “Lime-based injection grouts for the conservation of architectural surfaces,” Studies in Conservation, vol. 54, no. sup1, pp. 3–17, Jun. 2009, doi: 10.1179/sic.2009.54.Supplement-1.3.
- V. Pachta, “The Role of Glass Additives in the Properties of Lime-Based Grouts,” Heritage, vol. 4, no. 2, pp. 906–916, May 2021, doi: 10.3390/heritage4020049.
- V. Pachta, F. Papadopoulos, and M. Stefanidou, “Development and testing of grouts based on perlite by-products and lime,” Constr Build Mater, vol. 207, pp. 338–344, May 2019, doi: 10.1016/j.conbuildmat.2019.02.157.
- V. Pachta and D. Goulas, “Fresh and hardened state properties of fiber reinforced lime-based grouts,” Constr Build Mater, vol. 261, p. 119818, Nov. 2020, doi: 10.1016/j.conbuildmat.2020.119818.
- M. Stefanidou, V. Pachta, and G. Konstantinidis, “Exploitation of waste perlite products in lime-based mortars and grouts,” Sustain Chem Pharm, vol. 32, p. 101024, May 2023, doi: 10.1016/j.scp.2023.101024.
- S. Aktan, “Düzlem İçi Yükler Etkisindeki Yığma Duvarlarda Bünyesel Modelleme,” Doktora tezi, Yıldız Teknik Üniversitesi, İstanbul, 2016.
- D. V Oliveira and P. B. Lourenço, “Experimental behaviour of three-leaf stone masonry walls,” 2006.
- M. Corradi, C. Tedeschi, L. Binda, and A. Borri, “Experimental evaluation of shear and compression strength of masonry wall before and after reinforcement: Deep repointing,” Constr Build Mater, vol. 22, no. 4, pp. 463–472, Apr. 2008, doi: 10.1016/j.conbuildmat.2006.11.021.
- K. F. Abdulla, L. S. Cunningham, and M. Gillie, “Simulating masonry wall behaviour using a simplified micro-model approach,” Eng Struct, vol. 151, pp. 349–365, Nov. 2017, doi: 10.1016/j.engstruct.2017.08.021.
- H. O. Koksal, O. Jafarov, B. Doran, S. Aktan, and C. Karakoc, “Computational material modeling of masonry walls strengthened with fiber reinforced polymers,” Structural Engineering and Mechanics, vol. 48, no. 5, pp. 737–755, Dec. 2013, doi: 10.12989/sem.2013.48.5.737.
- B. Doran, S. Ulukaya, Z. Unsal Aslan, M. Karslioglu, and N. Yuzer, “Experimental Investigation of CFRP Strengthened Unreinforced Masonry Walls with Openings,” International Journal of Architectural Heritage, vol. 16, no. 12, pp. 1907–1920, Dec. 2022, doi: 10.1080/15583058.2021.1918286.
- B. Doran, M. Karslioglu, Z. Unsal Aslan, and C. Vatansever, “Experimental and Numerical Investigation of Unreinforced Masonry Walls with and without Opening,” International Journal of Architectural Heritage, vol. 17, no. 11, pp. 1833–1854, Nov. 2023, doi: 10.1080/15583058.2022.2080611.
- B. Dinç-Şengönül, Y. Hothot, B. Doran, N. Yüzer, S. Ulukaya, and D. Oktay, “Nonlinear Behaviour of Two-Whyte Stone Walls,” in 12th International Conference on Structural Analysis of Historical Constructions SAHC 2020, Barcelona, 2021, pp. 1–10. doi: 10.23967/sahc.2021.167.
- “ABAQUS 6.14/CAE Analysis User’s Manual,” Dassault Systems, Simulia Corporation: 6.14.
- İ. E. Bal, “Yığma yapılarda doğrusal olmayan artımsal analiz için bir yöntem önerisi,” Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol. 8, no. 3, pp. 463–474, 2017, [Online]. Available: https://dergipark.org.tr/tr/pub/dumf/issue/33629/405219
- J. Scacco, B. Ghiassi, G. Milani, and P. B. Lourenço, “A Fast Modeling Approach for Numerical Analysis of Unreinforced and FRCM Reinforced Masonry Walls Under Out-Of-Plane Loading,” Composites Part B, p. 107553, 2019, doi: 10.1016/j.compositesb.2019.107553.
- Y. M. Hothot, B. Dinç-Şengönül, B. Doran, and N. Yüzer, “Nonlinear Finite Element Analysis of Stone Masonry-Solid Wall,” in 6 th International Conference on Earthquake Engineering and Seismology, Gebze, Kocaeli, 2021.
- Y. M. Hothot, B. D. Şengönül, B. Doran, and N. Yüzer, “Finite Element Applications of Stone Masonry Walls,” in 14th International Congress on Advances in Civil Engineering (ACE2020-21), İstanbul, 2021, pp. 1–6.
- W. F. Chen, Plasticity in Reinforced Concrete. J. Ross Publishing, 2007.
- H. B. Kaushik, D. C. Rai, and S. K. Jain, “Stress-strain characteristics of clay brick masonry under uniaxial compression,” Journal of Materials in Civil Engineering, vol. 19, no. 9, pp. 728–739, 2007, doi: 10.1061/(ASCE)0899-1561(2007)19:9(728).
- H. O. KÖKSAL and H. YILDIRIM, “Eksenel basınç altında beton briket yığma prizmaların sonlu eleman analizi,” Teknik Dergi, vol. 15, no. 3, pp. 3249–3265, 2004, [Online]. Available: https://search.trdizin.gov.tr/tr/yayin/detay/1104
- T. Paulay and M. J. N. Priestly, Seismic Design of Reinforced Concrete and Masonry Buildings. 1992.
- A. Brencich, C. Corradi, and L. Gambarotta, “Compressive strength of solid clay brick masonry under eccentric loading,” Proceedings British Masonry Society, pp. 37–46, 2002.
- G. , Mohamad, P. B. , Lourenço, and H. R. Roman, “Mechanical behavior assessment of concrete block masonry prisms under compression.,” 2005.
- O. , Jafarov, “Lifli Polimerle Güçlendirilmiş Yığma Duvarların Modellenmesi, Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.,” 2012.
Experimental and Numerical Investigation on Strengthening Techniques for Double-Wythe Stone Masonry Walls
Year 2025,
Volume: 36 Issue: 4
Bilge Doran
,
Yasin Murat Hothot
,
Burcu Dinç-şengönül
,
Metin Karslıoğlu
,
Serhan Ulukaya
,
Nabi Yüzer
Abstract
Masonry structures represent the architectural and cultural heritage of great historical importance. They have been used for public and residential buildings for several thousand years. Many well-preserved old masonry structures still exist, proving that this construction can overcome loads and environmental impact. These structures have been exposed to lateral and vertical loads and atmospheric influences throughout their lives. In masonry structures, undesirable damage, cracks, and voids may occur due to environmental factors or various natural disasters, such as earthquakes, which may cause the structure to collapse. Different conventional strengthening techniques are available depending on the purpose required for stone masonry walls. This study aims to evaluate the structural behavior of double-wythe travertine stone masonry walls strengthened by carbon fiber reinforced polymer (CFRP). For this purpose, two masonry stone walls, which are made of saw-cut travertine stones and constructed with English bond, a pattern formed by laying alternate courses of stretchers and headers, were constructed and tested under in-plane monotonic lateral load and constant axial load. Lateral load-displacement relations and failure mechanisms were discussed. In addition, triaxial compression tests of stone, mortar, grout, and stone-mortar composite materials were performed to determine constitutive relationships. Furthermore, three-dimensional (3D) nonlinear finite element analysis (NLFEA) of stone masonry walls using the Drucker-Prager (DP) yield criterion was performed for unstrengthened stone masonry walls and strengthened ones with grout injection and CFRP. The study findings revealed that the proposed numerical modeling approach can accurately predict the experimental lateral load-displacement behavior of both strengthened and unstrengthened specimens subjected to in-plane combined axial loading and shear. Additionally, the model demonstrated its capability to simulate the experimental load-displacement and cracking patterns effectively.
References
- L. G. Baltazar, F. M. A. Henriques, and M. T. Cidade, “Experimental Study and Modeling of Rheological and Mechanical Properties of NHL Grouts,” Journal of Materials in Civil Engineering, vol. 27, no. 12, pp. 1–11, Dec. 2015, doi: 10.1061/(ASCE)MT.1943-5533.0001320.
- B. Doran, H. Orhun Koksal, S. Aktan, S. Ulukaya, D. Oktay, and N. Yuzer, “In-Plane Shear Behavior of Traditional Masonry Walls,” International Journal of Architectural Heritage, vol. 11, no. 2, pp. 278–291, Feb. 2017, doi: 10.1080/15583058.2016.1207114.
- P. B. Lourenço, D. V. Oliveira, P. Roca, and A. Orduña, “Dry Joint Stone Masonry Walls Subjected to In-Plane Combined Loading,” Journal of Structural Engineering, vol. 131, no. 11, pp. 1665–1673, Nov. 2005, doi: 10.1061/(ASCE)0733-9445(2005)131:11(1665).
- P. B. Lourenço, “Computational strategies for masonry structures,” Doctoral Thesis, 1996.
- M. Ashraf, A. N. Khan, A. Naseer, Q. Ali, and B. Alam, “Seismic Behavior of Unreinforced and Confined Brick Masonry Walls Before and After Ferrocement Overlay Retrofitting,” International Journal of Architectural Heritage, vol. 6, no. 6, pp. 665–688, Nov. 2012, doi: 10.1080/15583058.2011.599916.
- A. Borri, G. Castori, and M. Corradi, “Shear behavior of masonry panels strengthened by high strength steel cords,” Constr Build Mater, vol. 25, no. 2, pp. 494–503, Feb. 2011, doi: 10.1016/j.conbuildmat.2010.05.014.
- B. Doran, N. Yuzer, S. Aktan, D. Oktay, and S. Ulukaya, “Numerical Modeling of Traditional Masonry Walls Strengthened with Grout Injection,” International Journal of Architectural Heritage, vol. 14, no. 10, pp. 1517–1532, Nov. 2020, doi: 10.1080/15583058.2019.1618970.
- Z. Multazam, K. Yamamoto, K. Timsina, C. K. Gadagamma, and K. Meguro, “Shaking table tests of a one-quarter scale model of concrete hollow block masonry houses retrofitted with fiber-reinforced paint,” Sci Rep, vol. 14, no. 1, p. 8041, Apr. 2024, doi: 10.1038/s41598-024-58365-4.
- M. A. Elgawady and P. Lestuzzi, “A review of conventional seismic retrofitting techniques for URM,” 13th International Brick and Block Masonry Conference, no. January, pp. 1–10, 2004.
- M. Godio, F. Vanin, S. Zhang, and K. Beyer, “Quasi-static shear-compression tests on stone masonry walls with plaster: Influence of load history and axial load ratio,” Eng Struct, vol. 192, pp. 264–278, Aug. 2019, doi: 10.1016/j.engstruct.2019.04.041.
- M. ElGawady, M., Lestuzzi, P., Badoux, “A Review of Retrofitting of URM Walls Using Composites,” in 4th International Conference on Advanced Composite Materials in Bridges and Structures, Calgary, Alberta, 2004.
- M. Elgawady, “Seismic in-plane behavior of URM walls upgraded with composites,” 2004. doi: 10.5075/epfl-thesis-3111.
- T. C. Triantafillou, “Composites: a new possibility for the shear strengthening of concrete, masonry and wood,” Compos Sci Technol, vol. 58, no. 8, pp. 1285–1295, Aug. 1998, doi: 10.1016/S0266-3538(98)00017-7.
- M. Uranjek, V. Bosiljkov, R. Žarnić, and V. Bokan-Bosiljkov, “In situ tests and seismic assessment of a stone-masonry building,” Mater Struct, vol. 45, no. 6, pp. 861–879, Jun. 2012, doi: 10.1617/s11527-011-9804-z.
- B. Dinç-Şengönül, D. Oktay, and N. Yüzer, “Effect of temperature, resting time and brick dust (Horasan) on the rheological properties of hydraulic lime-based grouts,” Constr Build Mater, vol. 265, p. 120644, 2020, doi: 10.1016/j.conbuildmat.2020.120644.
- B. Dinç-Şengönül, M. Bayram, D. Oktay, and N. Yüzer, “Valorization of Cappadocia waste earth in the production of sustainable lime-based grouts,” Sustain Chem Pharm, vol. 38, p. 101503, Apr. 2024, doi: 10.1016/j.scp.2024.101503.
- L. G. Baltazar and F. M. A. Henriques, “Rheology of Grouts for Masonry Injection,” Key Eng Mater, vol. 624, pp. 283–290, Sep. 2014, doi: 10.4028/www.scientific.net/KEM.624.283.
- L. G. Baltazar, F. M. A. Henriques, D. Rocha, and M. T. Cidade, “Experimental Characterization of Injection Grouts Incorporating Hydrophobic Silica Fume,” Journal of Materials in Civil Engineering, vol. 29, no. 10, Oct. 2017, doi: 10.1061/(ASCE)MT.1943-5533.0002021.
- L. G. Baltazar, F. M. A. Henriques, and F. Jorne, “Optimisation of flow behaviour and stability of superplasticized fresh hydraulic lime grouts through design of experiments,” Constr Build Mater, vol. 35, pp. 838–845, Oct. 2012, doi: 10.1016/j.conbuildmat.2012.04.084.
- L. G. Baltazar, F. M. A. Henriques, and M. T. Cidade, “Contribution To the Design Of Hydraulic Lime-Based Grouts For Masonry Consolidation,” Journal of Civil Engineering and Management, vol. 21, no. 6, pp. 698–709, Jun. 2015, doi: 10.3846/13923730.2014.893918.
- E. Luso and P. B. Lourenço, “Experimental laboratory design of lime based grouts for masonry consolidation,” International Journal of Architectural Heritage, pp. 1–10, Jul. 2017, doi: 10.1080/15583058.2017.1354095.
- D. V. Bompa and A. Y. Elghazouli, “Shear-Compression Failure Envelopes for Clay Brick Lime Mortar Masonry Under Wet and Dry Conditions,” 2022, pp. 175–185. doi: 10.1007/978-3-030-90788-4_17.
- M. R. Valluzzi, F. da Porto, and C. Modena, “Behavior and modeling of strengthened three-leaf stone masonry walls,” Mater Struct, vol. 37, no. 3, pp. 184–192, Apr. 2004, doi: 10.1007/BF02481618.
- G. Vasconcelos and P. B. Lourenço, “Experimental characterization of stone masonry in shear and compression,” Constr Build Mater, vol. 23, no. 11, pp. 3337–3345, 2009, doi: 10.1016/j.conbuildmat.2009.06.045.
- M. Abdel-Mooty, A. Al Attar, and M. El Tahawy, “Experimental evaluation of stone masonry walls with lime based mortar under vertical loads,” Structural Studies, Repairs and Maintenance of Heritage Architecture XII, vol. 118, pp. 401–412, Sep. 2011, doi: 10.2495/STR110331.
- D. V. Oliveira, R. A. Silva, E. Garbin, and P. B. Lourenço, “Strengthening of three-leaf stone masonry walls: an experimental research,” Mater Struct, vol. 45, no. 8, pp. 1259–1276, Aug. 2012, doi: 10.1617/s11527-012-9832-3.
- A. Rezaie, M. Godio, and K. Beyer, “Experimental investigation of strength, stiffness and drift capacity of rubble stone masonry walls,” Constr Build Mater, vol. 251, p. 118972, Aug. 2020, doi: 10.1016/j.conbuildmat.2020.118972.
- L. Estevan, F. J. Baeza, D. Bru, and S. Ivorra, “Stone masonry confinement with FRP and FRCM composites,” Constr Build Mater, vol. 237, p. 117612, Mar. 2020, doi: 10.1016/j.conbuildmat.2019.117612.
- A. Sandoli, B. Ferracuti, and B. Calderoni, “FRP-confined tuff masonry columns: regular and irregular stone arrangement,” Compos B Eng, vol. 162, pp. 621–630, Apr. 2019, doi: 10.1016/j.compositesb.2019.01.015.
- A. Rahman and T. Ueda, “Experimental Investigation and Numerical Modeling of Peak Shear Stress of Brick Masonry Mortar Joint under Compression,” Journal of Materials in Civil Engineering, vol. 26, no. 9, Sep. 2014, doi: 10.1061/(ASCE)MT.1943-5533.0000958.
- G. Milani, T. Rotunno, E.Sacco, and A. Tralli, “Failure load of Frp strengthened masonry walls: Experimental results and numerical models,” SID Structural Integrity and Durability, vol. 2, no. 1, pp. 29–50, 2006.
- A. Ghobarah and K. El Mandooh Galal, “Out-of-Plane Strengthening of Unreinforced Masonry Walls with Openings,” Journal of Composites for Construction, vol. 8, no. 4, pp. 298–305, 2004, doi: 10.1061/(asce)1090-0268(2004)8:4(298).
- B. Bozyigit et al., “Damage to monumental masonry buildings in Hatay and Osmaniye following the 2023 Turkey earthquake sequence: The role of wall geometry, construction quality, and material properties,” Earthquake Spectra, vol. 40, no. 3, pp. 1870–1904, Aug. 2024, doi: 10.1177/87552930241247031.
- A. Bayraktar, N. Coşkun, and A. Yalçin, “Performance of Masonry Stone Buildings during the March 25 and 28, 2004 Aşkale (Erzurum) Earthquakes in Turkey,” Journal of Performance of Constructed Facilities, vol. 21, no. 6, pp. 432–440, Dec. 2007, doi: 10.1061/(ASCE)0887-3828(2007)21:6(432).
- C. Demir and A. Ilki, “Characterization of the materials used in the multi-leaf masonry walls of monumental structures in Istanbul, Turkey,” Constr Build Mater, vol. 64, pp. 398–413, Aug. 2014, doi: 10.1016/j.conbuildmat.2014.04.099.
- A. Bayraktar, N. CoŞkun, and A. Yalçin, “Damages of masonry buildings during the July 2, 2004 Doğubayazıt (Ağrı) earthquake in Turkey,” Eng Fail Anal, vol. 14, no. 1, pp. 147–157, Jan. 2007, doi: 10.1016/j.engfailanal.2005.11.011.
- B. Dinç-Şengönül, N. Yüzer, C. Şengönül, S. Ulukaya, D. Oktay, and Ö. Ündül, “Behavior of grout injected solid stone masonry walls under in-plane loading,” Structures, vol. 58, p. 105411, Dec. 2023, doi: 10.1016/j.istruc.2023.105411.
- General Directorate of Highways B.D.H.B.B., Historical Bridges, No: 268. Ankara, 2009.
- N. Mazzon, “Infuence of Grout Injection on the Dynamic Behaviour of Stone Masonry Buildings,” 2010.
- M. Ponte, J. Milosevic, and R. Bento, “Parametrical study of rubble stone masonry panels through numerical modelling of the in-plane behaviour,” Bulletin of Earthquake Engineering, vol. 17, no. 3, pp. 1553–1574, Mar. 2019, doi: 10.1007/s10518-018-0511-9.
- B. Silva, M. Dalla Benetta, F. da Porto, and C. Modena, “Experimental assessment of in-plane behaviour of three-leaf stone masonry walls,” Constr Build Mater, vol. 53, pp. 149–161, Feb. 2014, doi: 10.1016/j.conbuildmat.2013.11.084.
- G. Vasconcelos and P. B. Lourenço, “In-Plane Experimental Behavior of Stone Masonry Walls under Cyclic Loading,” Journal of Structural Engineering, vol. 135, no. 10, pp. 1269–1277, Oct. 2009, doi: 10.1061/(ASCE)ST.1943-541X.0000053.
- EN 1015-11, Methods of test for mortar for masonry - Determination of flexural and compressive strength of hardened mortar. 2019.
- EN 13286-43, Unbound and hydraulically bound mixtures - Part 43: Test method for the determination of the modulus of elasticity of hydraulically bound mixtures. 2017.
- E. Y. Gökyiğit-Arpaci, D. Oktay, N. Yüzer, S. Ulukaya, and D. Ekşi-Akbulut, “Performance Evaluation of Lime-Based Grout Used for Consolidation of Brick Masonry Walls,” Journal of Materials in Civil Engineering, vol. 31, no. 6, Jun. 2019, doi: 10.1061/(ASCE)MT.1943-5533.0002692.
- TS EN 1926, Natural stone test methods- Determination of compressive strength. 2007.
- TS EN 12372, Natural stone test methods- Determination of flexural strength under concentrated load. 2007.
- BS EN 1771, Products and systems for the protection and repair of concrete structures. Test methods. Determination of injectability and splitting test. British Standards. 3. 2004.
- B. Biçer-şimşir, I. Griffin, B. Palazzo-Bertholon, and L. Rainer, “Lime-based injection grouts for the conservation of architectural surfaces,” Studies in Conservation, vol. 54, no. sup1, pp. 3–17, Jun. 2009, doi: 10.1179/sic.2009.54.Supplement-1.3.
- V. Pachta, “The Role of Glass Additives in the Properties of Lime-Based Grouts,” Heritage, vol. 4, no. 2, pp. 906–916, May 2021, doi: 10.3390/heritage4020049.
- V. Pachta, F. Papadopoulos, and M. Stefanidou, “Development and testing of grouts based on perlite by-products and lime,” Constr Build Mater, vol. 207, pp. 338–344, May 2019, doi: 10.1016/j.conbuildmat.2019.02.157.
- V. Pachta and D. Goulas, “Fresh and hardened state properties of fiber reinforced lime-based grouts,” Constr Build Mater, vol. 261, p. 119818, Nov. 2020, doi: 10.1016/j.conbuildmat.2020.119818.
- M. Stefanidou, V. Pachta, and G. Konstantinidis, “Exploitation of waste perlite products in lime-based mortars and grouts,” Sustain Chem Pharm, vol. 32, p. 101024, May 2023, doi: 10.1016/j.scp.2023.101024.
- S. Aktan, “Düzlem İçi Yükler Etkisindeki Yığma Duvarlarda Bünyesel Modelleme,” Doktora tezi, Yıldız Teknik Üniversitesi, İstanbul, 2016.
- D. V Oliveira and P. B. Lourenço, “Experimental behaviour of three-leaf stone masonry walls,” 2006.
- M. Corradi, C. Tedeschi, L. Binda, and A. Borri, “Experimental evaluation of shear and compression strength of masonry wall before and after reinforcement: Deep repointing,” Constr Build Mater, vol. 22, no. 4, pp. 463–472, Apr. 2008, doi: 10.1016/j.conbuildmat.2006.11.021.
- K. F. Abdulla, L. S. Cunningham, and M. Gillie, “Simulating masonry wall behaviour using a simplified micro-model approach,” Eng Struct, vol. 151, pp. 349–365, Nov. 2017, doi: 10.1016/j.engstruct.2017.08.021.
- H. O. Koksal, O. Jafarov, B. Doran, S. Aktan, and C. Karakoc, “Computational material modeling of masonry walls strengthened with fiber reinforced polymers,” Structural Engineering and Mechanics, vol. 48, no. 5, pp. 737–755, Dec. 2013, doi: 10.12989/sem.2013.48.5.737.
- B. Doran, S. Ulukaya, Z. Unsal Aslan, M. Karslioglu, and N. Yuzer, “Experimental Investigation of CFRP Strengthened Unreinforced Masonry Walls with Openings,” International Journal of Architectural Heritage, vol. 16, no. 12, pp. 1907–1920, Dec. 2022, doi: 10.1080/15583058.2021.1918286.
- B. Doran, M. Karslioglu, Z. Unsal Aslan, and C. Vatansever, “Experimental and Numerical Investigation of Unreinforced Masonry Walls with and without Opening,” International Journal of Architectural Heritage, vol. 17, no. 11, pp. 1833–1854, Nov. 2023, doi: 10.1080/15583058.2022.2080611.
- B. Dinç-Şengönül, Y. Hothot, B. Doran, N. Yüzer, S. Ulukaya, and D. Oktay, “Nonlinear Behaviour of Two-Whyte Stone Walls,” in 12th International Conference on Structural Analysis of Historical Constructions SAHC 2020, Barcelona, 2021, pp. 1–10. doi: 10.23967/sahc.2021.167.
- “ABAQUS 6.14/CAE Analysis User’s Manual,” Dassault Systems, Simulia Corporation: 6.14.
- İ. E. Bal, “Yığma yapılarda doğrusal olmayan artımsal analiz için bir yöntem önerisi,” Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol. 8, no. 3, pp. 463–474, 2017, [Online]. Available: https://dergipark.org.tr/tr/pub/dumf/issue/33629/405219
- J. Scacco, B. Ghiassi, G. Milani, and P. B. Lourenço, “A Fast Modeling Approach for Numerical Analysis of Unreinforced and FRCM Reinforced Masonry Walls Under Out-Of-Plane Loading,” Composites Part B, p. 107553, 2019, doi: 10.1016/j.compositesb.2019.107553.
- Y. M. Hothot, B. Dinç-Şengönül, B. Doran, and N. Yüzer, “Nonlinear Finite Element Analysis of Stone Masonry-Solid Wall,” in 6 th International Conference on Earthquake Engineering and Seismology, Gebze, Kocaeli, 2021.
- Y. M. Hothot, B. D. Şengönül, B. Doran, and N. Yüzer, “Finite Element Applications of Stone Masonry Walls,” in 14th International Congress on Advances in Civil Engineering (ACE2020-21), İstanbul, 2021, pp. 1–6.
- W. F. Chen, Plasticity in Reinforced Concrete. J. Ross Publishing, 2007.
- H. B. Kaushik, D. C. Rai, and S. K. Jain, “Stress-strain characteristics of clay brick masonry under uniaxial compression,” Journal of Materials in Civil Engineering, vol. 19, no. 9, pp. 728–739, 2007, doi: 10.1061/(ASCE)0899-1561(2007)19:9(728).
- H. O. KÖKSAL and H. YILDIRIM, “Eksenel basınç altında beton briket yığma prizmaların sonlu eleman analizi,” Teknik Dergi, vol. 15, no. 3, pp. 3249–3265, 2004, [Online]. Available: https://search.trdizin.gov.tr/tr/yayin/detay/1104
- T. Paulay and M. J. N. Priestly, Seismic Design of Reinforced Concrete and Masonry Buildings. 1992.
- A. Brencich, C. Corradi, and L. Gambarotta, “Compressive strength of solid clay brick masonry under eccentric loading,” Proceedings British Masonry Society, pp. 37–46, 2002.
- G. , Mohamad, P. B. , Lourenço, and H. R. Roman, “Mechanical behavior assessment of concrete block masonry prisms under compression.,” 2005.
- O. , Jafarov, “Lifli Polimerle Güçlendirilmiş Yığma Duvarların Modellenmesi, Doktora Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.,” 2012.