Research Article
BibTex RIS Cite

Assessment of assynchronies on pressure time product (PTP) in active pediatric patients

Year 2022, , 93 - 96, 26.03.2022
https://doi.org/10.18663/tjcl.1019503

Abstract

Aim: To reveal the effect of synchronous or asynchronous patients on these values by examining the esophageal pressure (Pes ), transpulmonary pressure (PL), and time-pressure-product (PTP) in active patients who are planned to be weaned from the mechanical ventilator and can trigger their own respiration.
Material and Methods: Patients who are monitored on a mechanical ventilator and who can trigger their own respiration, and who are planned to be separated from the mechanical ventilator in the near future, were taken and an esophageal catheter was inserted, then the catheter filling volume was first optimized and then validated, and PL was started to be recorded by removing Pes from the airway pressure. With the recording devices on the ventilator, the mechanical ventilation parameters of the patients were recorded as both monitoring values and waveforms. Then, the mechanical ventilation settings were rearranged by the clinician at the bedside with reference to the esophageal waveform. Then, the waveforms of these patients have examined on the Matlab E2019a (Mathworks, USA) software, and each breath was marked as synchronous-asynchronous and the asynchrony index (AI) was calculated. Accordingly, the asynchronous and synchronous periods of the patient were defined, and the values of ∆Pes, ∆PL, PTP-Pes, PTP-PL, PTP-Pes-minutes, PTP-PL-minutes between the synchronous and asynchronous periods of the same patient were calculated on Matlab software, and synchronous and The changes in these values between asynchronous periods were analyzed with the SPSS statistical program. After examining the distribution of the variables by visual and analytical methods (Shapiro-Wilk), the statistical difference between the groups was examined.
Results: When the synchronous and asynchronous periods of all patients were compared, the following differences were found between the synchronous and asynchronous groups in favor of the synchronous group. ∆Peso [5.98 (3.55-9.08)] cmH2O, ∆PL [5 (2.7-7.25]cmH2O, ∆PTP-Peso [3.70 (2.81-4.6)) ]cmH2O*s, ∆PTP-PL [3.36 (1.39-4.18)]cmH2O*s, ∆PTP-Peso/min [1.72 (1.02-2.67)]cmH2O*min , ∆PTP-PL/min [1.25 (0.30-3.01)]cmH2O*min.
Conclusion: It has also been shown by statistical analyzes that the synchronization of active patients who are planned to be weaned from mechanical ventilator and who can trigger their own respiration causes a decrease in the values of ∆Peso, ∆Ptranspulmonary, PTP-Peso,PTP-Ptranspulmonary, PTP-Peso-minute, PTP-Ptranspulmonary-minute. When this information about synchronization is correlated with the literature, Pes monitoring in patients and synchronization of patients prevent mechanical ventilation-related lung damage that may occur in these patients, and thus the duration of hospital stay due to asynchrony, failure to wean from the ventilator, and the consequences that may occur. It is a method that can be useful in reducing mortality and morbidity.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • 1. Akoumianaki E, Maggiore SM, Valenza F et al. The Application of Esophageal Pressure Measurement in Patients with Respiratory Failure. American Journal of Respiratory and Critical Care Medicine 2014; 189: 520-31.
  • 2. Buytendijk HL. Intraosephageal pressure and lung elasticity, Thesis, University of Groningen 1949.
  • 3. Pham T, Telias I, Beitler JR. Esophageal Manometry. Respiratory Care 2020; 65: 772-92.
  • 4. Baydur A, Behrakis PK, Zin WA, Jaeger M, Milic-Emili J. A Simple Method for Assessing the Validity of the Esophageal Balloon Technique. American Review of Respiratory Disease 1982; 126: 788-91.
  • 5. Talmor D, Sarge T, Malhotra A, et al. Mechanical Ventilation Guided by Esophageal Pressure in Acute Lung Injury. New England Journal of Medicine 2008; 359: 2095-104.
  • 6. Hedenstierna G. Esophageal pressure: benefit and limitations. Minerva Anestesiologica 2012; 78: 959-66.
  • 7. Hamilton-Medical. Proximal flow sensor technical specifications 2021; https://www.hamilton-medical.com/dam/jcr:b8ef47c8-c2fa-47d5-8378-7fb9198ff7fc/Flow-sensor-tech-specs-EN-689568.00.pdf. Accessed 28 April 2021.
  • 8. Respironics. Capnostat mainstream CO2 sensor technical specifications. https://www.philips.com/static/oem-respironics/capnostatMainstreamCO2sensor.html. Accessed 28 April 2021.
  • 9. Byrne WJ, Euler AR, Campbell M. Body position and esophageal sphincter pressure in infants. American Journal of Diseases of Children 1982; 136: 523-5.
  • 10. Beckstrand J, Cirgin Ellett ML, McDaniel A. Predicting internal distance to the stomach for positioning nasogastric and orogastric feeding tubes in children. Journal of advanced nursing 2007; 59: 274-89.
  • 11. Bertoni M, Telias I, Urner M et al. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Critical Care 2019; 23: 346.
  • 12. Mojoli F, Torriglia F, Orlando A, Bianchi I, Arisi E, Pozzi M. Technical aspects of bedside respiratory monitoring of transpulmonary pressure. Annals of Translational Medicine 2018; 6-19.

Pediatrik aktif hastalarda asenkroninin basınç zaman ürününe etkisinin (PTP) değerlendirmesi

Year 2022, , 93 - 96, 26.03.2022
https://doi.org/10.18663/tjcl.1019503

Abstract

Amaç: Mekanik ventilatörden ayrılması planlanan ve kendi solunumlarını tetikleyebilen aktif hastalarda özefageal basınç (Pes ), transpulmoner basınç (PL) ve zaman-basınç-ürününü (PTP) inceleyerek hastaların senkron veya asenkron oluşunun bu değerlere etkisini ortaya koymak.
Gereç ve Yöntemler: Çalışmamıza mekanik ventilatörde izlenen ve kendi solunumunu tetikleyebilen, yakın zamanda mekanik ventilatörden ayrılması planlanan hastalar alınarak özefageal kateter yerleştirilmiş, ardından kateter dolum hacmi önce optimize ardından valide edilerek önce Pes ardından havayolu basıncından Pes’ın çıkarılmasıyla PL kayıt edilmeye başlanmıştır. Ventilatör üzerindeki kayıt cihazlarıyla hastaların mekanik ventilasyon parametreleri hem monitörizasyon değerleri hem de dalga formları olmak üzere kayıt altına alınmıştır. Daha sonra hasta başında klinisyen tarafından mekanik ventilasyon ayarları özefageal dalga formu referans alınarak yeniden düzenlenmiştir. Ardından bu hastaların dalga formları Matlab E2019a (Mathwoks, USA) yazılımı üzerinde incelenerek her soluk senkron-asenkron olarak işaretlenmiş ve asenkroni indeksi (AI) çıkarılmıştır. Buna göre hastanın asenkron ve senkron dönemleri tanımlanmış, aynı hastanın senkron ve asenkron dönemleri arasında ∆Pes, ∆PL, PTP-Pes, PTP-PL, PTP-Pes-dakika, PTP-PL-dakika değerleri yine Matlab yazılımı üzerinde hesaplanarak, senkron ve asenkron dönemler arasında bu değerlerin değişimleri SPSS istatistik programı ile incelenmiştir. Değişkenlerin dağılımının görsel ve analitik yöntemlerle (Shapiro-Wilk) incelenmesinin ardından istatiksel olarak gruplar arası farka bakılmıştır.
Bulgular: Tüm hastaların senkron ve asenkron dönemleri kıyaslandığında senkron ve asenkron gruplar arasında, senkron grup lehine şu farklar bulunmuştur. ∆Peso [5,98 (3,55-9,08)] cmH2O, ∆PL [5 (2,7-7,25]cmH2O, ∆PTP-Peso [3,70 (2,81-4,6)]cmH2O*s, ∆PTP-PL [3,36 (1,39-4,18)]cmH2O*s, ∆PTP-Peso/dk [1,72 (1,02-2,67)]cmH2O*min , ∆PTP-PL/dk [1,25 (0,30-3,01)]cmH2O*min.
Sonuç: Mekanik ventilatörden ayrılması planlanan ve kendi solunumunu tetikleyebilen aktif hastaların senkronizasyonunun hastaların ∆Peso, ∆Ptranspulmoner,PTP-Peso,PTP-Ptranspulmoner,PTP-Peso-dakika, PTP-Ptranspulmoner-dakika değerlerinde düşüşe yol açtığı yapılan istatistiki analizlerle de gösterilmiştir. Senkronizasyona dair bu bilgi litratürle korele edildiğinde, hastalarda Pes monitörizasyonu ve hastaların senkronizasyonu sözkonusu hastalarda oluşabilecek olan mekanik ventilasyon ilişkili akciğer hasarını önlemede ve dolayısıyla asenkroniye bağlı hastanede kalış süresi, ventilatörden ayırma başarısızlığı ve bunların sonucunda gelişebilecek olan mortalite ve morbiditeyi azaltmada faydalı olabilecek bir yöntemdir.

Project Number

-

References

  • 1. Akoumianaki E, Maggiore SM, Valenza F et al. The Application of Esophageal Pressure Measurement in Patients with Respiratory Failure. American Journal of Respiratory and Critical Care Medicine 2014; 189: 520-31.
  • 2. Buytendijk HL. Intraosephageal pressure and lung elasticity, Thesis, University of Groningen 1949.
  • 3. Pham T, Telias I, Beitler JR. Esophageal Manometry. Respiratory Care 2020; 65: 772-92.
  • 4. Baydur A, Behrakis PK, Zin WA, Jaeger M, Milic-Emili J. A Simple Method for Assessing the Validity of the Esophageal Balloon Technique. American Review of Respiratory Disease 1982; 126: 788-91.
  • 5. Talmor D, Sarge T, Malhotra A, et al. Mechanical Ventilation Guided by Esophageal Pressure in Acute Lung Injury. New England Journal of Medicine 2008; 359: 2095-104.
  • 6. Hedenstierna G. Esophageal pressure: benefit and limitations. Minerva Anestesiologica 2012; 78: 959-66.
  • 7. Hamilton-Medical. Proximal flow sensor technical specifications 2021; https://www.hamilton-medical.com/dam/jcr:b8ef47c8-c2fa-47d5-8378-7fb9198ff7fc/Flow-sensor-tech-specs-EN-689568.00.pdf. Accessed 28 April 2021.
  • 8. Respironics. Capnostat mainstream CO2 sensor technical specifications. https://www.philips.com/static/oem-respironics/capnostatMainstreamCO2sensor.html. Accessed 28 April 2021.
  • 9. Byrne WJ, Euler AR, Campbell M. Body position and esophageal sphincter pressure in infants. American Journal of Diseases of Children 1982; 136: 523-5.
  • 10. Beckstrand J, Cirgin Ellett ML, McDaniel A. Predicting internal distance to the stomach for positioning nasogastric and orogastric feeding tubes in children. Journal of advanced nursing 2007; 59: 274-89.
  • 11. Bertoni M, Telias I, Urner M et al. A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Critical Care 2019; 23: 346.
  • 12. Mojoli F, Torriglia F, Orlando A, Bianchi I, Arisi E, Pozzi M. Technical aspects of bedside respiratory monitoring of transpulmonary pressure. Annals of Translational Medicine 2018; 6-19.
There are 12 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Orıgınal Artıcle
Authors

Gokhan Ceylan

Sevgi Topal

Özlem Saraç Sandal 0000-0003-2684-0625

Gülhan Atakul 0000-0002-3832-9691

Mustafa Colak This is me

Ekin Soydan

Pınar Seven 0000-0001-7305-9984

Ferhat Sarı

Utku Karaarslan

Hasan Ağın

Project Number -
Publication Date March 26, 2022
Published in Issue Year 2022

Cite

APA Ceylan, G., Topal, S., Saraç Sandal, Ö., Atakul, G., et al. (2022). Assessment of assynchronies on pressure time product (PTP) in active pediatric patients. Turkish Journal of Clinics and Laboratory, 13(1), 93-96. https://doi.org/10.18663/tjcl.1019503
AMA Ceylan G, Topal S, Saraç Sandal Ö, Atakul G, Colak M, Soydan E, Seven P, Sarı F, Karaarslan U, Ağın H. Assessment of assynchronies on pressure time product (PTP) in active pediatric patients. TJCL. March 2022;13(1):93-96. doi:10.18663/tjcl.1019503
Chicago Ceylan, Gokhan, Sevgi Topal, Özlem Saraç Sandal, Gülhan Atakul, Mustafa Colak, Ekin Soydan, Pınar Seven, Ferhat Sarı, Utku Karaarslan, and Hasan Ağın. “Assessment of Assynchronies on Pressure Time Product (PTP) in Active Pediatric Patients”. Turkish Journal of Clinics and Laboratory 13, no. 1 (March 2022): 93-96. https://doi.org/10.18663/tjcl.1019503.
EndNote Ceylan G, Topal S, Saraç Sandal Ö, Atakul G, Colak M, Soydan E, Seven P, Sarı F, Karaarslan U, Ağın H (March 1, 2022) Assessment of assynchronies on pressure time product (PTP) in active pediatric patients. Turkish Journal of Clinics and Laboratory 13 1 93–96.
IEEE G. Ceylan, “Assessment of assynchronies on pressure time product (PTP) in active pediatric patients”, TJCL, vol. 13, no. 1, pp. 93–96, 2022, doi: 10.18663/tjcl.1019503.
ISNAD Ceylan, Gokhan et al. “Assessment of Assynchronies on Pressure Time Product (PTP) in Active Pediatric Patients”. Turkish Journal of Clinics and Laboratory 13/1 (March 2022), 93-96. https://doi.org/10.18663/tjcl.1019503.
JAMA Ceylan G, Topal S, Saraç Sandal Ö, Atakul G, Colak M, Soydan E, Seven P, Sarı F, Karaarslan U, Ağın H. Assessment of assynchronies on pressure time product (PTP) in active pediatric patients. TJCL. 2022;13:93–96.
MLA Ceylan, Gokhan et al. “Assessment of Assynchronies on Pressure Time Product (PTP) in Active Pediatric Patients”. Turkish Journal of Clinics and Laboratory, vol. 13, no. 1, 2022, pp. 93-96, doi:10.18663/tjcl.1019503.
Vancouver Ceylan G, Topal S, Saraç Sandal Ö, Atakul G, Colak M, Soydan E, Seven P, Sarı F, Karaarslan U, Ağın H. Assessment of assynchronies on pressure time product (PTP) in active pediatric patients. TJCL. 2022;13(1):93-6.


e-ISSN: 2149-8296

The content of this site is intended for health care professionals. All the published articles are distributed under the terms of

Creative Commons Attribution Licence,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.