Research Article
BibTex RIS Cite

Anti-adhesion activity and physicochemical features of the surgical silk sutures coated with Liquidambar orientalis styrax

Year 2020, Volume: 11 Issue: 5, 359 - 365, 30.12.2020
https://doi.org/10.18663/tjcl.663112

Abstract

Aim: The present study was aimed to characterize the surgical silk sutures coated with Styrax liquidus, Turkish sweetgum balsam obtained from Liquidambar orientalis, and to investigate their anti-adhesion capacity against oral pathogenic microorganisms.
Material and Methods: Fourier Transform Infrared Spectroscopy (FTIR) was applied to determine the chemical composition of the Liquidambar orientalis styrax (LOS)-coated sutures. Thermogravimetric Analysis (TGA) was performed to compare the thermal stability of the LOS-coated sutures. Scanning Electron Microscopy (SEM) was used to evaluate the morphological structure of the sutures. Anti-adhesion activity of the LOS-coated sutures was investigated against common oral pathogenic microorganisms.
Results: FTIR spectrum and SEM images revealed out that LOS was succesfully coated onto the silk sutures. TGA analysis showed that LOS coating moderately affected the thermal stability of the silk sutures. According to the anti-adhesion activity analysis, the highest activity was observed against S. aureus, a gram positive bacteria.
Conclusion: Coating the surgical silk sutures with LOS might be useful to prevent the surgical site infections in oral surgery.

References

  • 1. Chang WK, Srinivasa S, Morton R, Hill AG. Triclosan-impregnated sutures to decrease surgical site infections: systematic review and meta-analysis of randomized trials. Ann Surg 2012; 255: 854-59.
  • 2. Chen X, Hou D, Wang L, Zhang Q, Zou J, Sun G. Antibacterial surgical silk sutures using a high-performance slow-release carrier coating system. ACS Appl Mater Interfaces 2015; 7: 22394-403.
  • 3. Guo J, Pan LH, Li YX, et al. Efficacy of triclosan-coated sutures for reducing risk of surgical site infection in adults: a meta-analysis of randomized clinical trials. Journal Surg Res 2016; 201: 105-17.
  • 4. Obermeier A, Schneider J, Wehner S et al. Novel high efficient coatings for anti-microbial surgical sutures using chlorhexidine in fatty acid slow-release carrier systems. PloS one 2014; 9: 101426.
  • 5. Pethile S, Chen X-J, Hou D-d, Wang L. Effect of changing coating process parameters in the preparation of antimicrobial-coated silk sutures: An in vitro study. Fiber Polym 2014; 15: 1589-95.
  • 6. Parirokh M, Asgary S, Eghbal M, Stowe S, Kakoei S. A scanning electron microscope study of plaque accumulation on silk and PVDF suture materials in oral mucosa. Int Endod J 2004; 37: 776-81.
  • 7. Viju S, Thilagavathi G. Characterization of tetracycline hydrochloride drug incorporated silk sutures. J Text Inst 2013; 104: 289-94.
  • 8. Baygar T, Sarac N, Ugur A, Karaca IR. Antimicrobial characteristics and biocompatibility of the surgical sutures coated with biosynthesized silver nanoparticles. Bioorg Chem 2019; 86: 254-58.
  • 9. Bide M, Bachuwar A, Phaneufand M et al. Fiber-Antibiotic Interactions in the Development of Infection-Resistant Sutures. AATCC rev 2007; 7: 44-8.
  • 10. Viju S, Thilagavathi G. Effect of chitosan coating on the characteristics of silk-braided sutures. J Ind Text 2013; 42: 256-68.
  • 11. Faria RL, Cardoso LML, Akisue G et al. Antimicrobial activity of Calendula officinalis, Camellia sinensis and chlorhexidine against the adherence of microorganisms to sutures after extraction of unerupted third molars. J Appl Oral Sci 2011; 19: 476-82.
  • 12. Okmen G, Turkcan O, Ceylan O, Gork G. The Antimicrobial Activity of Aliquidambar orientalis mill. Against Food Pathogens and Antioxidant Capacity of Leaf Extracts. Afr J Tradit, Complement Altern Med 2014; 11: 28-32.
  • 13. Saraç N, Şen B. Antioxidant, mutagenic, antimutagenic activities, and phenolic compounds of Liquidambar orientalis Mill. var. orientalis. Ind Crops Prod 2014; 53: 60-4.
  • 14. Nalbantsoy A, Karış M, Karakaya L, Akgül Y. Antioxidant, cytotoxic and iNOS activity of Liquidambar orientalis Mill. resin extracts. Turk J Biochem 2016; 41: 198-205.
  • 15. Sağdıç O, Özkan G, Özcan M, Özçelik S. A study on inhibitory effects of sığla tree (Liquidambar orientalis Mill. var. orientalis) storax against several bacteria. Phytother Res 2005; 19: 549-51.
  • 16. Oskay M, Sarı D. Antimicrobial screening of some Turkish medicinal plants. Pharmaceut Biol 2007; 45: 176-81.
  • 17. Oskay M, Oskay D, Kalyoncu F. Activity of some plant extracts against multi-drug resistant human pathogens.Iranian J Pharmacol Res 2009; 8: 293-300.
  • 18. Gurbuz I, Yesilada E, Demirci B, Sezik E, Demirci F, Baser KH. Characterization of volatiles and anti-ulcerogenic effect of Turkish sweetgum balsam (Styrax liquidus). J of Ethnopharmacol 2013; 148: 332-36.
  • 19. Baytop T. Sur le Styrax liquidus. Pharm. Acta Helv 1950; 25: 60.
  • 20. Lee YS, Kim J, Lee SG, Oh E, Shin SC, Park IK. Effects of plant essential oils and components from Oriental sweetgum (Liquidambar orientalis) on growth and morphogenesis of three phytopathogenic fungi. Pestic Biochem Phys 2009; 93: 138-43.
  • 21. Obermeier A, Schneider J, Harrasser N et al. Viable adhered Staphylococcus aureus highly reduced on novel antimicrobial sutures using chlorhexidine and octenidine to avoid surgical site infection (SSI). PloS One 2018; 13: 0190912.
  • 22. Pons‐Vicente O, López‐Jiménez L, Sánchez‐Garcés MA, Sala‐Pérez S, Gay‐Escoda C. A comparative study between two different suture materials in oral implantology. Clin Oral Implants Res 2011; 22: 282-88.
  • 23. Tanker M, Sayron E. Styrax Liquidus Üzerinde Farmakognozik Araştırmalar. AÜ Ecz Fak Mec 1974; 4: 108-48.
  • 24. Elakkiya T, Malarvizhi G, Rajiv S, Natarajan TS. Curcumin loaded electrospun Bombyx mori silk nanofibers for drug delivery. Polym Int 2014; 63: 100-5.
  • 25. Carella S, Fioramonti P, Onesti M, Scuderi N. Comparison between antimicrobial-coated sutures and uncoated sutures for the prevention of surgical site infections in plastic surgery: a double blind control trial. Eur Rev Med Pharmacol Sci 2019; 23: 958-64.
  • 26. Gomez-Alonso A, Garcia-Criado FJ, Parreno-Manchado FC et al. Study of the efficacy of Coated VICRYL Plus® Antibacterial suture (coated Polyglactin 910 suture with Triclosan) in two animal models of general surgery. J Infect 2007; 54: 82-8.
  • 27. Leknes KN, Selvig KA, Bøe OE, Wikesjö UM. Tissue reactions to sutures in the presence and absence of anti‐infective therapy. J Clin Periodontol 2005; 32: 130-8.
  • 28. De Simone S, Gallo A, Paladini F, Sannino A, Pollini M. Development of silver nano-coatings on silk sutures as a novel approach against surgical infections. J Mater Sci Mater Med 2014; 25: 2205-14.
  • 29. Janiga P, Elayarajah B, Rajendran R, Rammohan, R, Venkatrajah B, Asa S. Drug-eluting silk sutures to retard post-operative surgical site infections. J Ind Text 2012; 42: 176-90.
  • 30. Honda G, Yeşilada E, Tabata M et al. Traditional medicine in Turkey VI. Folk medicine in West Anatolia: Afyon, Kütahya, Denizli, Muğla, Aydin provinces. J Ethnopharmacol 1996; 53: 75-87.
  • 31. Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 2004; 94: 223-53.
  • 32. Hemaiswarya S, Kruthiventi AK, Doble M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008; 15: 639-52.
  • 33. Hafizoglu H. Analytical studies on the balsam of Liquidambar orientalis Mill. by gas chromatography and mass spectrometry. Holzforschung 1982; 36: 311-3.
  • 34. Hafizoglu H, Reunanen M, Istek A. Chemical composition of levant storax. Holzforschung 1996; 50: 116-7.
  • 35. Duru ME, Cakir A, Harmandar M. Composition of the volatile oils isolated from the leaves of Liquidambar orientalis Mill. var. orientalis and L. orientalis var. integriloba from Turkey. Flav Fragr J 2002; 17: 95-8.
  • 36. Fernandez X, Lizzani‐Cuvelier L, Loiseau AM, Perichet C, Delbecque C, Arnaudo JF.. Chemical composition of the essential oils from Turkish and Honduras Styrax. Flav Fragr J 2005; 20: 70-3.
  • 37. Obermeier A, Schneider J, Föhr P et al. In vitro evaluation of novel antimicrobial coatings for surgical sutures using octenidine. BMC Microbiol 2015; 15: 186.
  • 38. Onesti M, Carella S, Scuderi N. Effectiveness of antimicrobial-coated sutures for the prevention of surgical site infection: A review of the literature. Eur Rev Med Pharmacol Sci 2018; 22: 5729-39.
  • 39. Galal I, El-Hindawy K. Impact of using triclosan-antibacterial sutures on incidence of surgical site infection. Am J Surg 2011; 202: 133-8.
  • 40. Rašić Ž, Schwarz D, Adam VN, et al. Efficacy of antimicrobial triclosan-coated polyglactin 910 (Vicryl* Plus) suture for closure of the abdominal wall after colorectal surgery. Coll Antropol 2011; 35: 439-43.
  • 41. Nakamura T, Kashimura N, Noji T et al. Triclosan-coated sutures reduce the incidence of wound infections and the costs after colorectal surgery: a randomized controlled trial. Surgery 2013; 153: 576-83.
  • 42. Justinger C, Slotta JE, Ningel S, Gräber S, Kollmar O, Schilling MK. Surgical-site infection after abdominal wall closure with triclosan-impregnated polydioxanone sutures: results of a randomized clinical pathway facilitated trial (NCT00998907). Surgery 2013; 154: 589-95.
  • 43. Tabrizi R, Mohajerani H, Bozorgmehr F. Polyglactin 910 suture compared with polyglactin 910 coated with triclosan in dental implant surgery: randomized clinical trial. Int J Oral Maxillofac Surg 2019; 48: 1367-71.
  • 44. Mingmalairak C, Ungbhakorn P, Paocharoen V. Efficacy of antimicrobial coating suture coated polyglactin 910 with tricosan (Vicryl plus) compared with polyglactin 910 (Vicryl) in reduced surgical site infection of appendicitis, double blind randomized control trial, preliminary safety report. J Med Assoc Thai 2009; 92: 770-5.
  • 45. Chen SY, Chen TM, Dai NT et al. Do antibacterial-coated sutures reduce wound infection in head and neck cancer reconstruction? Eur J Surg Oncol 2011; 37: 300-4.
  • 46. Sethi KS, Karde PA, Joshi CP. Comparative evaluation of sutures coated with triclosan and chlorhexidine for oral biofilm inhibition potential and antimicrobial activity against periodontal pathogens: An in vitro study. Indian J Dent Res 2016; 27: 535-9.

Liquidambar orientalis styrax ile kaplanan cerrahi ipek sütürlerin anti-adezyon aktivitesi ve fizikokimyasal özellikleri

Year 2020, Volume: 11 Issue: 5, 359 - 365, 30.12.2020
https://doi.org/10.18663/tjcl.663112

Abstract

Amaç: Bu çalışmada, Liquidambar orientalis'ten elde edilen Türk sığla balsamı olan Styrax liquidus ile kaplanmış cerrahi ipek sütürlerin karakterize edilmesi ve oral patojenik mikroorganizmalara karşı anti-adezyon kapasitelerinin araştırılması amaçlandı.
Gereç ve Yöntemler: Liquidambar orientalis styrax (LOS) kaplı sütürlerin kimyasal bileşimini belirlemek için Fourier Transform Kızılötesi Spektroskopisi (FTIR) uygulandı. LOS kaplı sütürlerin termal stabilitesini karşılaştırmak için Termogravimetrik Analiz (TGA) yapıldı. Sütürlerin morfolojik yapısını değerlendirmek için Taramalı Elektron Mikroskopisi (SEM) kullanıldı. LOS kaplı sütürlerin anti-adezyon aktivitesi, yaygın oral patojenik mikroorganizmalara karşı araştırıldı.
Bulgular: FTIR spektrumu ve SEM görüntüleri LOS'un ipek sütürlere başarılı bir şekilde kaplandığını ortaya koydu. TGA analizi, LOS kaplamanın ipek sütürlerin termal stabilitesini orta derecede etkilediğini gösterdi. Anti-adezyon aktivite analizine göre, en yüksek aktivitenin gram pozitif bakteri olan S. aureus'a karşı olduğu gözlendi.
Sonuç: Cerrahi ipek sütürlerin LOS ile kaplanması, oral cerrahide cerrahi bölge enfeksiyonlarını önlemek için yararlı olabilmektedir.

References

  • 1. Chang WK, Srinivasa S, Morton R, Hill AG. Triclosan-impregnated sutures to decrease surgical site infections: systematic review and meta-analysis of randomized trials. Ann Surg 2012; 255: 854-59.
  • 2. Chen X, Hou D, Wang L, Zhang Q, Zou J, Sun G. Antibacterial surgical silk sutures using a high-performance slow-release carrier coating system. ACS Appl Mater Interfaces 2015; 7: 22394-403.
  • 3. Guo J, Pan LH, Li YX, et al. Efficacy of triclosan-coated sutures for reducing risk of surgical site infection in adults: a meta-analysis of randomized clinical trials. Journal Surg Res 2016; 201: 105-17.
  • 4. Obermeier A, Schneider J, Wehner S et al. Novel high efficient coatings for anti-microbial surgical sutures using chlorhexidine in fatty acid slow-release carrier systems. PloS one 2014; 9: 101426.
  • 5. Pethile S, Chen X-J, Hou D-d, Wang L. Effect of changing coating process parameters in the preparation of antimicrobial-coated silk sutures: An in vitro study. Fiber Polym 2014; 15: 1589-95.
  • 6. Parirokh M, Asgary S, Eghbal M, Stowe S, Kakoei S. A scanning electron microscope study of plaque accumulation on silk and PVDF suture materials in oral mucosa. Int Endod J 2004; 37: 776-81.
  • 7. Viju S, Thilagavathi G. Characterization of tetracycline hydrochloride drug incorporated silk sutures. J Text Inst 2013; 104: 289-94.
  • 8. Baygar T, Sarac N, Ugur A, Karaca IR. Antimicrobial characteristics and biocompatibility of the surgical sutures coated with biosynthesized silver nanoparticles. Bioorg Chem 2019; 86: 254-58.
  • 9. Bide M, Bachuwar A, Phaneufand M et al. Fiber-Antibiotic Interactions in the Development of Infection-Resistant Sutures. AATCC rev 2007; 7: 44-8.
  • 10. Viju S, Thilagavathi G. Effect of chitosan coating on the characteristics of silk-braided sutures. J Ind Text 2013; 42: 256-68.
  • 11. Faria RL, Cardoso LML, Akisue G et al. Antimicrobial activity of Calendula officinalis, Camellia sinensis and chlorhexidine against the adherence of microorganisms to sutures after extraction of unerupted third molars. J Appl Oral Sci 2011; 19: 476-82.
  • 12. Okmen G, Turkcan O, Ceylan O, Gork G. The Antimicrobial Activity of Aliquidambar orientalis mill. Against Food Pathogens and Antioxidant Capacity of Leaf Extracts. Afr J Tradit, Complement Altern Med 2014; 11: 28-32.
  • 13. Saraç N, Şen B. Antioxidant, mutagenic, antimutagenic activities, and phenolic compounds of Liquidambar orientalis Mill. var. orientalis. Ind Crops Prod 2014; 53: 60-4.
  • 14. Nalbantsoy A, Karış M, Karakaya L, Akgül Y. Antioxidant, cytotoxic and iNOS activity of Liquidambar orientalis Mill. resin extracts. Turk J Biochem 2016; 41: 198-205.
  • 15. Sağdıç O, Özkan G, Özcan M, Özçelik S. A study on inhibitory effects of sığla tree (Liquidambar orientalis Mill. var. orientalis) storax against several bacteria. Phytother Res 2005; 19: 549-51.
  • 16. Oskay M, Sarı D. Antimicrobial screening of some Turkish medicinal plants. Pharmaceut Biol 2007; 45: 176-81.
  • 17. Oskay M, Oskay D, Kalyoncu F. Activity of some plant extracts against multi-drug resistant human pathogens.Iranian J Pharmacol Res 2009; 8: 293-300.
  • 18. Gurbuz I, Yesilada E, Demirci B, Sezik E, Demirci F, Baser KH. Characterization of volatiles and anti-ulcerogenic effect of Turkish sweetgum balsam (Styrax liquidus). J of Ethnopharmacol 2013; 148: 332-36.
  • 19. Baytop T. Sur le Styrax liquidus. Pharm. Acta Helv 1950; 25: 60.
  • 20. Lee YS, Kim J, Lee SG, Oh E, Shin SC, Park IK. Effects of plant essential oils and components from Oriental sweetgum (Liquidambar orientalis) on growth and morphogenesis of three phytopathogenic fungi. Pestic Biochem Phys 2009; 93: 138-43.
  • 21. Obermeier A, Schneider J, Harrasser N et al. Viable adhered Staphylococcus aureus highly reduced on novel antimicrobial sutures using chlorhexidine and octenidine to avoid surgical site infection (SSI). PloS One 2018; 13: 0190912.
  • 22. Pons‐Vicente O, López‐Jiménez L, Sánchez‐Garcés MA, Sala‐Pérez S, Gay‐Escoda C. A comparative study between two different suture materials in oral implantology. Clin Oral Implants Res 2011; 22: 282-88.
  • 23. Tanker M, Sayron E. Styrax Liquidus Üzerinde Farmakognozik Araştırmalar. AÜ Ecz Fak Mec 1974; 4: 108-48.
  • 24. Elakkiya T, Malarvizhi G, Rajiv S, Natarajan TS. Curcumin loaded electrospun Bombyx mori silk nanofibers for drug delivery. Polym Int 2014; 63: 100-5.
  • 25. Carella S, Fioramonti P, Onesti M, Scuderi N. Comparison between antimicrobial-coated sutures and uncoated sutures for the prevention of surgical site infections in plastic surgery: a double blind control trial. Eur Rev Med Pharmacol Sci 2019; 23: 958-64.
  • 26. Gomez-Alonso A, Garcia-Criado FJ, Parreno-Manchado FC et al. Study of the efficacy of Coated VICRYL Plus® Antibacterial suture (coated Polyglactin 910 suture with Triclosan) in two animal models of general surgery. J Infect 2007; 54: 82-8.
  • 27. Leknes KN, Selvig KA, Bøe OE, Wikesjö UM. Tissue reactions to sutures in the presence and absence of anti‐infective therapy. J Clin Periodontol 2005; 32: 130-8.
  • 28. De Simone S, Gallo A, Paladini F, Sannino A, Pollini M. Development of silver nano-coatings on silk sutures as a novel approach against surgical infections. J Mater Sci Mater Med 2014; 25: 2205-14.
  • 29. Janiga P, Elayarajah B, Rajendran R, Rammohan, R, Venkatrajah B, Asa S. Drug-eluting silk sutures to retard post-operative surgical site infections. J Ind Text 2012; 42: 176-90.
  • 30. Honda G, Yeşilada E, Tabata M et al. Traditional medicine in Turkey VI. Folk medicine in West Anatolia: Afyon, Kütahya, Denizli, Muğla, Aydin provinces. J Ethnopharmacol 1996; 53: 75-87.
  • 31. Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 2004; 94: 223-53.
  • 32. Hemaiswarya S, Kruthiventi AK, Doble M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008; 15: 639-52.
  • 33. Hafizoglu H. Analytical studies on the balsam of Liquidambar orientalis Mill. by gas chromatography and mass spectrometry. Holzforschung 1982; 36: 311-3.
  • 34. Hafizoglu H, Reunanen M, Istek A. Chemical composition of levant storax. Holzforschung 1996; 50: 116-7.
  • 35. Duru ME, Cakir A, Harmandar M. Composition of the volatile oils isolated from the leaves of Liquidambar orientalis Mill. var. orientalis and L. orientalis var. integriloba from Turkey. Flav Fragr J 2002; 17: 95-8.
  • 36. Fernandez X, Lizzani‐Cuvelier L, Loiseau AM, Perichet C, Delbecque C, Arnaudo JF.. Chemical composition of the essential oils from Turkish and Honduras Styrax. Flav Fragr J 2005; 20: 70-3.
  • 37. Obermeier A, Schneider J, Föhr P et al. In vitro evaluation of novel antimicrobial coatings for surgical sutures using octenidine. BMC Microbiol 2015; 15: 186.
  • 38. Onesti M, Carella S, Scuderi N. Effectiveness of antimicrobial-coated sutures for the prevention of surgical site infection: A review of the literature. Eur Rev Med Pharmacol Sci 2018; 22: 5729-39.
  • 39. Galal I, El-Hindawy K. Impact of using triclosan-antibacterial sutures on incidence of surgical site infection. Am J Surg 2011; 202: 133-8.
  • 40. Rašić Ž, Schwarz D, Adam VN, et al. Efficacy of antimicrobial triclosan-coated polyglactin 910 (Vicryl* Plus) suture for closure of the abdominal wall after colorectal surgery. Coll Antropol 2011; 35: 439-43.
  • 41. Nakamura T, Kashimura N, Noji T et al. Triclosan-coated sutures reduce the incidence of wound infections and the costs after colorectal surgery: a randomized controlled trial. Surgery 2013; 153: 576-83.
  • 42. Justinger C, Slotta JE, Ningel S, Gräber S, Kollmar O, Schilling MK. Surgical-site infection after abdominal wall closure with triclosan-impregnated polydioxanone sutures: results of a randomized clinical pathway facilitated trial (NCT00998907). Surgery 2013; 154: 589-95.
  • 43. Tabrizi R, Mohajerani H, Bozorgmehr F. Polyglactin 910 suture compared with polyglactin 910 coated with triclosan in dental implant surgery: randomized clinical trial. Int J Oral Maxillofac Surg 2019; 48: 1367-71.
  • 44. Mingmalairak C, Ungbhakorn P, Paocharoen V. Efficacy of antimicrobial coating suture coated polyglactin 910 with tricosan (Vicryl plus) compared with polyglactin 910 (Vicryl) in reduced surgical site infection of appendicitis, double blind randomized control trial, preliminary safety report. J Med Assoc Thai 2009; 92: 770-5.
  • 45. Chen SY, Chen TM, Dai NT et al. Do antibacterial-coated sutures reduce wound infection in head and neck cancer reconstruction? Eur J Surg Oncol 2011; 37: 300-4.
  • 46. Sethi KS, Karde PA, Joshi CP. Comparative evaluation of sutures coated with triclosan and chlorhexidine for oral biofilm inhibition potential and antimicrobial activity against periodontal pathogens: An in vitro study. Indian J Dent Res 2016; 27: 535-9.
There are 46 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Orıgınal Artıcle
Authors

Yeliz Kılınç 0000-0003-2853-7830

Tuba Baygar 0000-0002-1238-3227

Nurdan Saraç 0000-0001-7676-542X

Aysel Uğur 0000-0002-5188-1106

İnci Karaca 0000-0003-1870-2687

Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 11 Issue: 5

Cite

APA Kılınç, Y., Baygar, T., Saraç, N., Uğur, A., et al. (2020). Anti-adhesion activity and physicochemical features of the surgical silk sutures coated with Liquidambar orientalis styrax. Turkish Journal of Clinics and Laboratory, 11(5), 359-365. https://doi.org/10.18663/tjcl.663112
AMA Kılınç Y, Baygar T, Saraç N, Uğur A, Karaca İ. Anti-adhesion activity and physicochemical features of the surgical silk sutures coated with Liquidambar orientalis styrax. TJCL. December 2020;11(5):359-365. doi:10.18663/tjcl.663112
Chicago Kılınç, Yeliz, Tuba Baygar, Nurdan Saraç, Aysel Uğur, and İnci Karaca. “Anti-Adhesion Activity and Physicochemical Features of the Surgical Silk Sutures Coated With Liquidambar Orientalis Styrax”. Turkish Journal of Clinics and Laboratory 11, no. 5 (December 2020): 359-65. https://doi.org/10.18663/tjcl.663112.
EndNote Kılınç Y, Baygar T, Saraç N, Uğur A, Karaca İ (December 1, 2020) Anti-adhesion activity and physicochemical features of the surgical silk sutures coated with Liquidambar orientalis styrax. Turkish Journal of Clinics and Laboratory 11 5 359–365.
IEEE Y. Kılınç, T. Baygar, N. Saraç, A. Uğur, and İ. Karaca, “Anti-adhesion activity and physicochemical features of the surgical silk sutures coated with Liquidambar orientalis styrax”, TJCL, vol. 11, no. 5, pp. 359–365, 2020, doi: 10.18663/tjcl.663112.
ISNAD Kılınç, Yeliz et al. “Anti-Adhesion Activity and Physicochemical Features of the Surgical Silk Sutures Coated With Liquidambar Orientalis Styrax”. Turkish Journal of Clinics and Laboratory 11/5 (December 2020), 359-365. https://doi.org/10.18663/tjcl.663112.
JAMA Kılınç Y, Baygar T, Saraç N, Uğur A, Karaca İ. Anti-adhesion activity and physicochemical features of the surgical silk sutures coated with Liquidambar orientalis styrax. TJCL. 2020;11:359–365.
MLA Kılınç, Yeliz et al. “Anti-Adhesion Activity and Physicochemical Features of the Surgical Silk Sutures Coated With Liquidambar Orientalis Styrax”. Turkish Journal of Clinics and Laboratory, vol. 11, no. 5, 2020, pp. 359-65, doi:10.18663/tjcl.663112.
Vancouver Kılınç Y, Baygar T, Saraç N, Uğur A, Karaca İ. Anti-adhesion activity and physicochemical features of the surgical silk sutures coated with Liquidambar orientalis styrax. TJCL. 2020;11(5):359-65.


e-ISSN: 2149-8296

The content of this site is intended for health care professionals. All the published articles are distributed under the terms of

Creative Commons Attribution Licence,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.