Review
BibTex RIS Cite

Kanser immünoterapisinde güncel yaklaşımlar ve immünoterapinin sınırlayıcı etkilerine genel bakış

Year 2022, Volume: 13 Issue: 1, 153 - 165, 26.03.2022
https://doi.org/10.18663/tjcl.1038881

Abstract

Günümüzde ileri evre kanserlerin tedavisindeki güçlükler henüz aşılamamıştır. Kemoterapi ve radyoterapdeki ilerlemelere rağmen, geleneksel kanser tedavisi, tümör ilerlemesini kontrol etmede yetersiz kalmakta ve tümör hücresinin ilaç direnci geliştirmesi ile tedavinin başarısı sınırlanmaktadır. Bu durum daha iyi tedavi seçeneklerinin araştırılmasını zorunlu kılmaktadır. İmmün kontrol noktası sinyallerini hedefleyen ilaçlar, immün sistem ile tümör arasındaki etkileşimlerin klinik önemini güçlendirerek, immün sistemin anti kanser aktivite göstermesini sağlanmaya çalışarak,kanser tedavisine yeni bir yaklaşım getirmiştir. İmmün sistem ve kanserle ilgili temel mekanizmaları hakkındaki bilgiler hızla artmaktadır. İmmün sistem, kendini ve kendinden olmayanı ayırt edecek şekilde tasarlanmıştır ve genetik rekombinasyon yoluyla tanıyabileceği antijen sayısı neredeyse sınırsızdır. Bu nedenle kanser hücrelerindeki mutasyonel olaylar, anormallikler ve farklılıklar kanserin gelişmesini veya ilerlemesini önlemede önemli bir rol oynayabilir. Bununla birlikte, tümörler immünsürvayanstan kaçmak için çeşitli mekanizmalar kullanabilir. İmmünoterapinin gelişimi büyük umut vadetse de, hastaların bir kısmında primer direnç gelişebilmekte ve bu hastalar immünoterapiden fayda görmemektedirler. Ayrıca, tedaviye yanıt veren hastalarda da klinik ilerlemede ortaya çıkabilen kazanılmış direnç, immünoterapinin başarısını sınırlayabilmektedir. Direnç mekanizmaları arasında, tümör mikro çevresindeki (TME) immün hücrelerinin işlevinin ve infiltrasyonunun azalmasına yol açan tümöre özgü yollar vardır. Direnç başlangıcını önlemek ve üstesinden gelmek için kemoterapi, radyoterapi ve yeni immünomodülatör ajanlarla kombinasyon tedavilerini öngören yeni stratejiler umut vericidir. Bu derlemede, immünoterapötik yaklaşımlar (İmmün Kontrol Noktası İnhibitörleri (ICI), Lenfosit- Düzenleyici Sitokinler, Kanser Aşıları, CAR T ve T Hücre Reseptörü (TCR), KostimülatörReseptörler), kanser immünoterapisi ile ilgili mevcut bilgiler ve immunoterapiye verilen hasta yanıtlarının incelenmesi hedeflenmiştir.

References

  • 1. Dobosz P, Dzieciątkowski T. The Intriguing History of Cancer Immunotherapy. Front Immunol 2019; 10: 2965 [doi:10.3389/fimmu.2019.02965.]
  • 2. De Mattia E, Cecchi E, Guardascione M, et al. Pharmacogenetics of the systemic treatment in advanced hepatocellular carcinoma. World journal of gastroenterology 2019; 25: 3870–3896 [https://doi.org/10.3748/wjg.v25.i29.3870.]
  • 3. Anwanwan D, Singh S.K, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer 2020; 1873: 88314 [doi: 10.1016/j.bbcan.2019.188314.]
  • 4. Wang J.J, Lei K.F, Han F. Tumor microenvironment: recent advances in various cancer treatments. European Review for Medical and Pharmacological Sciences Jun 2018; 12: 3855-3864.
  • 5. Couzin-Frankel J. Cancer immunotherapy. Science 2013; 342: 1432-1433 [doi: 10.1126/science.342.6165.1432]
  • 6. Bhattacharya S, Mohanty A, Achuthan S, et al. Group Behavior and Emergence of Cancer Drug Resistance. Elsevier Trends in Cancer 2021; 7: 323-334 [https://doi.org/10.1016/j.trecan.2021.01.009]
  • 7. Alsibai K.D, Meseure D. Significance of Tumor Microenvironment Scoring and Immune Biomarkers in Patient Stratification and Cancer Outcomes. Histopathology Un Update. London 2018.
  • 8. Giraldo N.A, Rafael Sanchez S, Peske J.D, et al. The clinical role of the TME in solid cancer. British Journal of Cancer 2019; 120: 45–53 [https://doi.org/10.1038/s41416-018-0327-z]
  • 9. Li X, Song W, Shao C, et al. Emerging predictors of the response to the blockade of immune checkpoints in cancer therapy. Cell Molecular Immunology 2019; 16:28–39 [https://doi.org/10.1038/s41423-018-0086-z]
  • 10. Riley R.S, June C.H, Langer R, et al. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 2019; 18: 175–196 [https://doi.org/10.1038/s41573-018-0006-z.]
  • 11. Bluestone J.A, Anderson M. Tolerance in the Age of Immunotherapy. N Engl J Med 2020;383(12): 1156-1166. [doi: 10.1056/NEJMra1911109]
  • 12. Nakamura Y. Biomarkers for Immune Checkpoint Inhibitor-Mediated Tumor Response and Adverse Events. Frontiers in medicine 2019; 6: 119. [doi:10.3389/fmed.2019.00119.]
  • 13. Ling Li, Zhi-Yao He, Xia-Wei Wei, Yu-Quan Wei. Recent advances of biomaterials in biotherapy. Regenerative Biomaterials 2016; 3: 99–105. [https://doi.org/10.1093/rb/rbw007]
  • 14. Rosenberg S, Yang J, Restifo N. Cancer immunotherapy: moving beyond current vaccines. Nature Medicine 2004; 10: 909–915 [ https://doi.org/10.1038/nm1100]
  • 15. Gotwals P, Cameron S, Cipolletta D, et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer 2017; 5: 286-301 [https://doi.org/10.1038/nrc.2017.17]
  • 16. Borcoman E, Nandikolla A, Long G, Goel S, Le Tourneau C, Patterns of Response and Progression to Immunotherapy. American Society of Clinical Oncology Educational Book, May 2018; 38: 169-178 [doi: 10.1200/EDBK_200643]
  • 17. Reischer A, Kruger S, von Bergwelt-Baildon M. A decade of checkpoint inhibitors: current standard of care and future trends. Deutsche Medizinische Wochenschrift 2021; 146(17): 1108-1118 [DOI: 10.1055/a-1303-8820.]
  • 18. Ardolino L., Joshua A. Immune checkpoint inhibitors in malignancy. Australian Prescriber 2019; 42: 62-67 [https://doi.org/10.18773/austprescr.2019.012.]
  • 19. Kimiz-Gebologlu I, Gulce-Iz S, Biray-Avci C. Monoclonal antibodies in cancer immunotherapy. Mol Biol Rep 2018; 45: 2935–2940 [https://doi.org/10.1007/s11033-018-4427-x.]
  • 20. Darvin P, Toor S. M, Nair V. S, Elkord E. Immun checkpoint inhibitors: recent progress and potential biomarkers. Experimental & molecular checkpoint inhibitor based immunotherapy medicine 2018; 12: 1-11 [doi:10.1038/s12276-018-0191.]
  • 21. Ruf P, Bauer H.W, Schoberth A. et al. First time intravesically administered trifunctional antibody catumaxomab in patients with recurrent non-muscle invasive bladder cancer indicates high tolerability and local immunological activity. Cancer Immunol Immunother 2021; 70: 2727–2735 [https://doi.org/10.1007/s00262-021-02930-7.]
  • 22. Liu M, Cao Z, Zhang R, Chen Y, Yang X. Injectable Supramolecular Hydrogel for Locoregional Immune Checkpoint Blockade and Enhanced Cancer Chemo-Immunotherapy. ACS Applied Materials & Interfaces 2021; 13: 33874-33884 [doi: 10.1021/acsami.1c08285.]
  • 23. Xia A, Zhang Y, Xu J, Yin T, Lu X. J. T Cell Dysfunction in Cancer Immunity and Immunotherapy. Frontiers in immunology 2019; 10: 1719 [ https://doi.org/10.3389/fimmu.2019.01719]
  • 24. Schizas D, Charalampakis N, Kole C, et al. Immunotherapy for pancreatic cancer. Cancer Treatment Reviews 2020; 86: 0305-7372 [https://doi.org/10.1016/j.ctrv.2020.102016.]
  • 25. Ribas A, Wolchok J.D. Cancer immunotherapy using checkpoint blockade. Science 2018; 359: 1350-1355 [doi: 10.1126/science.aar4060]
  • 26. Farkona S, Diamandis EP, Blasutig IM.Cancer immunotherapy: the beginning of the end of cancer? BMC Med 2016 5;14:73 [ https://doi.org/10.1186/s12916-016-0623-5]
  • 27. Ren D, Hua Y, Yu B, et al. Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Mol Cancer 2020; 19: 19 [https://doi.org/10.1186/s12943-020-1144-6.]
  • 28. Yan Y, Kumar A. B, Finnes H, et al. Combining Immune Checkpoint Inhibitors With Conventional Cancer Therapy. Frontiers in immunology 2018; 9: 1709. [https://doi.org/10.3389/fimmu.2018.01739]
  • 29. Fumet JD, Limagne E, Thibaudin M, et al. Precision medicine phase II study evaluating the efficacy of a double immunotherapy by durvalumab and tremelimumab combined with olaparib in patients with solid cancers and carriers of homologous recombination repair genes mutation in response or stable after olaparib treatment BMC Cancer 2020; 1: 748 [https://doi.org/10.1186/s12885-020-07253-x]
  • 30. Bar J, Urban D, Ofek E, et al. Neoadjuvant pembrolizumab (pempro) for early stage non - small cell lung cancer (NSCLC): Updated report of a phase I study, MK3475-223. Journal of clinical oncology 2019; 15,37: 8534-8534 [https://ascopubs.org/doi/abs/10.1200/JCO.2019.37.15_suppl.8534.]
  • 31. Singh S, Hassan D, Aldawsari H.M, Molugulu N, Shukla R, Kesharwan P. Immune checkpoint inhibitors: a promising anticancer therapy. Drug Discovery Today 2020; 25: 223-229 [https://doi.org/10.1016/j.drudis.2019.11.003]
  • 32. Byun D J, Wolchok J. D, Rosenberg L. M, Girotra M. Cancer immunotherapy-immune checkpoint blockade and associated endocrinopathies. Nat. Rev. Endocrinol 2017; 13: 195-207 [https://doi.org/10.1038/nrendo.2016.205]
  • 33. Sim G. C, Radvanyi L. The IL-2 cytokine family in cancer immunotherapy. Cytokine Growth Factor Rev. 2014; 25:. 377–390 [10.1016/j.cytogfr.2014.07.018.]
  • 34. Derynck R, Turley S.J, Akhurst R.J. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 2021; 1: 9-34 [https://doi.org/10.1038/s41571-020-0403-1]
  • 35. Shi H, Li K, Ni Y, Liang X, Zhao X. Myeloid-Derived Suppressor Cells: Implications in the Resistance of Malignant Tumors to T Cell-Based Immunotherapy. Front Cell Dev Biol 2021; 9: 707198 [doi:10.3389/fcell.2021.707198.]
  • 36. Scott A.M, Allison J.P, Wolchok J.D. Monoclonal antibodies in cancer therapy. Cancer Immun January 2012; 1: 14 [http://cancerimmunolres.aacrjournals.org/content/12/1/14.abstract]
  • 37. Galluzzi L, Garg A.D. Immunology of Cell Death in Cancer Immunotherapy Cells 2021; 10: 1208 [ https://doi.org/10.3390/cells10051208.]
  • 38. Matsui Y, Yamada T, Masuzawa N, Hamada S, Takayama K, Hiranuma O. Advanced G-CSF-producing non-small cell lung cancer-not otherwise specified, with favorable response to pembrolizumab monotherapy. Respirology Case Reports 2020; 8: 625. [https://doi.org/10.1002/rcr2.625.]
  • 39. Mignona M.D, Fedele S, Russo L, Lo. The World Cancer Report and the burden of oral cancer. 2, April 2010, European Journal of Cancer Prevention, Cilt 13, s. 139-142. Mignogna, M D; Fedele, S; Russo, L Lo. The World Cancer Report and the burden of oral cancer. European Journal of Cancer Prevention 2004; 13: 139-142
  • 40. Vanhaver C, Van der Bruggen P, Bruger A. M. MDSC in Mice and Men: Mechanisms of Immunosuppression in Cancer. Journal of Clinical Medicine 2021; 10: 2872. [doi:10.3390/jcm10132872.]
  • 41. Wu K, Lin K, Li X, et al. Redefining Tumor-Associated Macrophage Subpopulations and Functions in the Tumor Microenvironment. Frontiers in immunology 2020; 11: 1731. [ https://doi.org/10.3389/.]
  • 42. Blass E, Ott P.A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol. 2021;18(4): 215-229. [doi: 10.1038/s41571-020-00460-2.]
  • 43. Yang F, Shi K, Hao Y, et al. Cyclophosphamide loaded thermo-responsive hydrogel system synergize with a hydrogel cancer vaccine to amplify cancer immunotherapy in a prime-boost manner. Bioactive Materials 2021; 6(10): 3036-3048. [https://doi.org/10.1016/j.bioactmat.2021.03.003.]
  • 44. Xu Z, Chokkalingam N, Tello-Ruiz E, et al. A DNA-Launched Nanoparticle Vaccine Elicits CD8+ T-cell Immunity to Promote In Vivo Tumor Control. Cancer Immunol Res. 2020; 8(11): 1354-1364. [doi: 10.1158/2326-6066.CIR-20-0061.]
  • 45. Zhang H, Zheng H, Guo P, et al. Broadly Protective CD8+ T Cell Immunity to Highly Conserved Epitopes Elicited by Heat Shock Protein gp96-Adjuvanted Influenza Monovalent Split Vaccine. J Virol 2021; 95(12): e00507-21. [doi: 10.1128/JVI.00507-21.]
  • 46. Gardner T.A, Elzey B.D, Hahn N.M. Sipuleucel-T (Provenge) autologous vaccine approved for treatment of men with asymptomatic or minimally symptomatic castrate-resistant metastatic prostate cancer. Hum Vaccin Immunother 2012; 8(4): 534-9. [doi: 10.4161/hv.19795.]
  • 47. Pardi N, Hogan M, Porter F, et al. mRNA vaccines a new era in vaccinology. Nat Rev Drug Discov 2018; 17: 261–279 .[ https://doi.org/10.1038/nrd.2017.243.]
  • 48. Lauss M, Donia M, Harbst K, et al. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma. Nat. Commun 2017;8: 1738. [https://doi.org/10.1038/s41467-017-01460-0]
  • 49. Tsimberidou A.M, Levit L.A, Schilsky R.L, et al. Trial Reporting in Immuno-Oncology (TRIO): An American Society of Clinical Oncology-Society for Immunotherapy of Cancer Statement. J immunotherapy cancer 2018; 6: 108. [https://doi.org/10.1186/s40425-018-0426-7.]
  • 50. Guozhu Xie, Han Dong, Yong Liang, James Dongjoo Ham, Romee Rizwan, Jianzhu Chen. CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine 2020; 59: 2352-3964. [ https://doi.org/10.1016/j.ebiom.2020.102975.]
  • 51. Singh A.K, McGuirk J.P. CAR T cells: continuation in a revolution of immunotherapy. The Lancet Oncology 2020; 21: 168-178. [https://doi.org/10.1016/S1470-2045(19)30823-X.]
  • 52. Jin J, Cheng J, Huang M, Luo H, Zhou J. Fueling chimeric antigen receptor T cells with cytokines. American journal of cancer research 2020; 10: 4038–4055. PMID: 33414984; PMCID: PMC7783740.
  • 53. Churchill B. M, Patri P, Inrig J. K, et al. Chimeric Antigen Receptor-T Cell (CAR-T Cell) Therapy in Advanced Renal Cell Carcinoma. International Research Journal of Oncology 2021; 4: 40-48. 8https://www.journalirjo.com/index.php/IRJO/article/view/30158.]
  • 54. U.S. National Library of medicine. ClinicalTrials. Clinicaltrials.gov. https://clinicaltrials.gov/. Erişim tarihi:19 10 2021. https://clinicaltrials.gov/ct2/results?cond=Cancer&term=CAR+T&cntry=&state=&city=&dist=.
  • 55. ClinicalTrials.gov. Clinicaltrials.gov. TCR | Cancer. Erişim tarihi:21 October 2021. https://clinicaltrials.gov/ct2/results?cond=Cancer&term=TCR+&cntry=&state=&city=&dist=.
  • 56. June C. H, O'Connor R. S, Kawalekar O. U, Ghassemi S, Milone M. C. CAR T cell immunotherapy for human cancer. Science 2018; 359: 1361–1365. [https://doi.org/10.1126/science.aar6711.]
  • 57. Matosevic M..Chapter Three - Targeting natural killer cells in cancer immunotherapy. Academic Press 2022: 63-82. [https://doi.org/10.1016/B978-0-323-85781-9.00003-8.
  • 58. Amotore F, Gorvel L, Olive D. Role of Inducible Co-Stimulator (ICOS) in cancer immunotherapy. Expert Opinion on Biological Therapy 2019;20:141-150. [https://doi.org/10.1080/14712598.2020.1693540.]
  • 59. Croft M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev Immunol 2003; 3: 609–620. [https://doi.org/10.1038/nri1148.]
  • 60. Burugu S, Amanda R. D, Torsten O. N. Emerging targets in cancer immunotherapy. Seminars in Cancer Biology 2018; 52: 39-52. 8https://doi.org/10.1016/j.semcancer.2017.10.001.]
  • 61. Alves Costa Silva C, Facchinetti F, Routy B, Derosa L. New pathways in immune stimulation: targeting OX40. ESMO open 2020; 5: e000573. [https://doi.org/10.1136/esmoopen-2019-000573.]
  • 62. Ohmura H, Yamaguchi K, Hanamura F, et al. .Activation of central/effector memory T cells in advanced gastric cancer patients treated with anti programmed death-1 antibody. Journal of Clinical Oncology 2019; 37(4): 54-54 [doi: 10.1200/JCO.2019.37.4.]
  • 63. Deng J, Zhao S, Zhang X, Wang H, Zhou C, He Y. OX40 (CD134) and OX40 ligand, important immune checkpoints in cancer. Onco Targets and Therapy 2019: 7347-7363. [https://doi.org/10.2147/OTT.S214211.]
  • 64. Aspeslagh S, Postel-Vinay S, Rusakiewicz S, et al. Rationale for anti-OX40 cancer immunotherapy. European Journal of Cancer 2016; 52: 50-66. [https://doi.org/10.1016/j.ejca.2015.08.021. ISSN 0959-8049.]
  • 65. Jeong S, Park S.H. Co-Stimulatory Receptors in Cancers and Their Implications for Cancer Immunotherapy. Immune Netw 2020; 20(1): 1142986. [https://doi.org/10.4110/in.2020.20.e3.]
  • 66. ClinicalTrials. ClinicalTrials.gov. Erişim tarihi: 22 10 2021. [https://clinicaltrials.gov/ct2/results?cond=cancer&term=costimulatory+receptors&cntry=&state=&city=&dist=.
  • 67. Jonathan M, Pitt. M, Vétizou R.D, et al. Routy.Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and -Extrinsic Factors. İmmunity 2016; 44: 1255-1269. [https://doi.org/10.1016/j.immuni.2016.06.001.]
  • 68. Chen C. B, Wu M. Y, Ng C. Y, et al. Severe cutaneous adverse reactions induced by targeted anticancer therapies and immunotherapies. Cancer management and research 2018; 10: 1259–1273.[ https://doi.org/10.2147/CMAR.S163391.]
  • 69. Naing A, Hajjar J, Gulley J. L, et al. Strategies for improving the management of immune-related adverse events. Journal for immunotherapy of cancer 2020; 8: e001754 [https://doi.org/10.1136/jitc-2020-001754.]
  • 70. Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 2017; 377: 45-56 [doi: 10.1056/NEJMoa1709684.]
  • 71. Yalçın Ş, Sarı E. Kanserd bireyselleştirilmiş tedavilere genel bakış. Nuclear Medicine Seminar 2015; 2: 28-35 [doi:10.4274/nts.2015.20.]
  • 72. Kähler K. C, Hassel J. C, Heinzerling L, et al. Management of side effects ofimmune checkpoint blockade by anti-CTLA-4 and anti-PD-1antibodies in metastatic melanoma. JDDG: Journal der Deutschen Dermatologischen Gesellschaft 2016; 14(7): 662-681 [ https://doi.org/10.1111/ddg.13047]
  • 73. O'Donnell J. S, Teng M, Smyth M. J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nature reviews. Clinical oncology 2019; 16: 151–167 [https://doi.org/10.1038/s41571-018-0142-8.]
  • 74. Mechanisms of and approaches to overcoming resistance to immunotherapy. Schultz L, Gardner R. 1, 2019, Hematology. American Society of Hematology. Education Program 2019: 226–232 [https://doi.org/10.1182/hematology.2019000018.]
  • 75. Schoenfeld A. J, Hellmann M. D. Acquired Resistance to Immune Checkpoint Inhibitors. Cancer cell 2020; 37:443–455.[https://doi.org/10.1016/j.ccell.2020.03.017.]
  • 76. Kim T. K., Herbst R. S, Chen L. Defining and Understanding Adaptive Resistance in Cancer Immunotherapy. Trends in immunology 2018; 39: 624–631 [https://doi.org/10.1016/j.it.2018.05.001.]
  • 77. Gondhowiardjo S. A, Handoko Jayalie V. F, Apriantoni R, et al. Tackling Resistance to Cancer Immunotherapy: What Do We Know?. Molecules (Basel, Switzerland) 2020; 25(18): 4096 [https://doi.org/10.3390/molecules25184096.]
  • 78. Van Elsas M.J, van Hall T, Van der Burg S.H. Future Challenges in Cancer Resistance to Immunotherapy. Cancers 2020; 12: 935 [ https://doi.org/10.3390/cancers12040935.]
  • 79. Bagchi S, Yuan R, Engleman E. G. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annual review of pathology 2021; 16: 223–249 [https://doi.org/10.1146/annurev-pathol-042020-042741.]
  • 80. Tan E, El-Rayes B. Pancreatic Cancer, and Immunotherapy: Resistance Mechanisms and Proposed Solutions. Journal of gastrointestinal cancer 2019; 50: 1-8 [https://doi.org/10.1007/s12029-018-0179-z.]
  • 81. Pérez-Ruiz E, Melero I, Kopecka J, et al. Cancer immunotherapy resistance based on immune checkpoints inhibitors: Targets, biomarkers, and remedies. Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy 2020; 53: 100718 [https://doi.org/10.1016/j.drup.2020.100718.]
  • 82. Garon E. B, Hellmann M. D, Rizvi N. A, et al. Five-Year Overall Survival for Patients With Advanced Non‒Small-Cell Lung Cancer Treated With Pembrolizumab: Results From the Phase I KEYNOTE-001 Study. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2019; 37(28): 2518–2527 [https://doi.org/10.1200/JCO.19.00934]
  • 83. Cable J, Greenbaum B, Pe'er D, et al. Frontiers in cancer immunotherapy-a symposium report. Annals of the New York Academy of Sciences 2021; 1489: 30-47 [https://doi.org/10.1111/nyas.14526.]
  • 84. D'Angelo S. P, Bhatia S, Brohl A. S, et al. Avelumab in patients with previously treated metastatic Merkel cell carcinoma: long-term data and biomarker analyses from the single-arm phase 2 JAVELIN Merkel 200 trial. Journal for immunotherapy of cancer 2020; 8: e000674. [https://doi.org/10.1136/jitc-2020-000674.]
  • 85. Cancer Research İnstitute. FDA approval timeline of active immunotherapies. Erişim Tarihi: 16 Kasım 2021. https://www.cancerresearch.org/en-us/scientists/immuno-oncology-landscape/fda-approval-timeline-of-active-immunotherapies.
  • 86. Zhang Q, Ping J, Huang Z, et.al. CAR-T Cell Therapy in Cancer: Tribulations and Road Ahead. Journal of Immunology Research 2020; 11: 1924379 [https://doi.org/10.1155/2020/1924379.]
  • 87. Gao B, Sun Q. Programming gene expression in multicellular organisms for physiology modulation through engineered bacteria. Nature Communications 2021; 12(1): 2689 [https://doi.org/10.1038/s41467-021-22894-7]
  • 88. Ascierto A.P, Kirkwood J.M, Grob J.J, et al. The role of BRAF V600 Mutation in melenoma. J Transl Med 2012; 85(10): Published online 2012 [doi:-5876-10-85 10.1186/1479.]
  • 89. NCT02403193. Trial of PBF-509 and PDR001 in Patients With Advanced Non-small Cell Lung Cancer (NSCLC) (AdenONCO). ClinicalTrials.gov. 2021. https://clinicaltrials.gov/ct2/show/NCT02403193?term=COMBO+I&cond=PD1&draw=2&rank=1.

Overview of current approaches in cancer immunotherapy and limiting effects of immunotherapy

Year 2022, Volume: 13 Issue: 1, 153 - 165, 26.03.2022
https://doi.org/10.18663/tjcl.1038881

Abstract

Today, the difficulties in the treatment of advanced cancers have not been overcome yet. Despite advances in chemotherapy and radiotherapy, conventional cancer treatment remains insufficient to control tumor progression, and the success of treatment is limited by the tumor cell's development of drug resistance. This situation necessitates the search for better treatment options. Drugs targeting immune checkpoint signals have brought a new approach to cancer treatment by strengthening the clinical importance of interactions between the immune system and the tumor, and by trying to ensure that the immune system shows anti-cancer activity. Information about the immune system and its basic mechanisms related to cancer is increasing rapidly. The immune system is designed to distinguish between self and non-self, and the number of antigens it can recognize through genetic recombination is almost unlimited. Therefore, mutational events, abnormalities and differences in cancer cells can play an important role in preventing the development or progression of cancer. However, tumors can use a variety of mechanisms to evade immunosurveillance. Although the development of immunotherapy is promising, primary resistance may develop in some patients and these patients do not benefit from immunotherapy. In addition, acquired resistance that may occur in clinical progression in patients who respond to treatment may limit the success of immunotherapy. Among the resistance mechanisms are tumor-specific pathways that lead to reduced function and infiltration of immune cells in the tumor microenvironment (TME). New strategies envisioning combination therapies with chemotherapy, radiotherapy and new immunomodulatory agents to prevent and overcome the onset of resistance are fairly promising. In this review, it is aimed to examine immunotherapeutic approaches (Immune Checkpoint Inhibitors (ICI), Lymphocyte Regulatory Cytokines, Cancer Vaccines, CAR T and T Cell Receptor (TCR), Costimulatory Receptors), current information about cancer immunotherapy, and patient responses to immunotherapy.

References

  • 1. Dobosz P, Dzieciątkowski T. The Intriguing History of Cancer Immunotherapy. Front Immunol 2019; 10: 2965 [doi:10.3389/fimmu.2019.02965.]
  • 2. De Mattia E, Cecchi E, Guardascione M, et al. Pharmacogenetics of the systemic treatment in advanced hepatocellular carcinoma. World journal of gastroenterology 2019; 25: 3870–3896 [https://doi.org/10.3748/wjg.v25.i29.3870.]
  • 3. Anwanwan D, Singh S.K, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer 2020; 1873: 88314 [doi: 10.1016/j.bbcan.2019.188314.]
  • 4. Wang J.J, Lei K.F, Han F. Tumor microenvironment: recent advances in various cancer treatments. European Review for Medical and Pharmacological Sciences Jun 2018; 12: 3855-3864.
  • 5. Couzin-Frankel J. Cancer immunotherapy. Science 2013; 342: 1432-1433 [doi: 10.1126/science.342.6165.1432]
  • 6. Bhattacharya S, Mohanty A, Achuthan S, et al. Group Behavior and Emergence of Cancer Drug Resistance. Elsevier Trends in Cancer 2021; 7: 323-334 [https://doi.org/10.1016/j.trecan.2021.01.009]
  • 7. Alsibai K.D, Meseure D. Significance of Tumor Microenvironment Scoring and Immune Biomarkers in Patient Stratification and Cancer Outcomes. Histopathology Un Update. London 2018.
  • 8. Giraldo N.A, Rafael Sanchez S, Peske J.D, et al. The clinical role of the TME in solid cancer. British Journal of Cancer 2019; 120: 45–53 [https://doi.org/10.1038/s41416-018-0327-z]
  • 9. Li X, Song W, Shao C, et al. Emerging predictors of the response to the blockade of immune checkpoints in cancer therapy. Cell Molecular Immunology 2019; 16:28–39 [https://doi.org/10.1038/s41423-018-0086-z]
  • 10. Riley R.S, June C.H, Langer R, et al. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 2019; 18: 175–196 [https://doi.org/10.1038/s41573-018-0006-z.]
  • 11. Bluestone J.A, Anderson M. Tolerance in the Age of Immunotherapy. N Engl J Med 2020;383(12): 1156-1166. [doi: 10.1056/NEJMra1911109]
  • 12. Nakamura Y. Biomarkers for Immune Checkpoint Inhibitor-Mediated Tumor Response and Adverse Events. Frontiers in medicine 2019; 6: 119. [doi:10.3389/fmed.2019.00119.]
  • 13. Ling Li, Zhi-Yao He, Xia-Wei Wei, Yu-Quan Wei. Recent advances of biomaterials in biotherapy. Regenerative Biomaterials 2016; 3: 99–105. [https://doi.org/10.1093/rb/rbw007]
  • 14. Rosenberg S, Yang J, Restifo N. Cancer immunotherapy: moving beyond current vaccines. Nature Medicine 2004; 10: 909–915 [ https://doi.org/10.1038/nm1100]
  • 15. Gotwals P, Cameron S, Cipolletta D, et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer 2017; 5: 286-301 [https://doi.org/10.1038/nrc.2017.17]
  • 16. Borcoman E, Nandikolla A, Long G, Goel S, Le Tourneau C, Patterns of Response and Progression to Immunotherapy. American Society of Clinical Oncology Educational Book, May 2018; 38: 169-178 [doi: 10.1200/EDBK_200643]
  • 17. Reischer A, Kruger S, von Bergwelt-Baildon M. A decade of checkpoint inhibitors: current standard of care and future trends. Deutsche Medizinische Wochenschrift 2021; 146(17): 1108-1118 [DOI: 10.1055/a-1303-8820.]
  • 18. Ardolino L., Joshua A. Immune checkpoint inhibitors in malignancy. Australian Prescriber 2019; 42: 62-67 [https://doi.org/10.18773/austprescr.2019.012.]
  • 19. Kimiz-Gebologlu I, Gulce-Iz S, Biray-Avci C. Monoclonal antibodies in cancer immunotherapy. Mol Biol Rep 2018; 45: 2935–2940 [https://doi.org/10.1007/s11033-018-4427-x.]
  • 20. Darvin P, Toor S. M, Nair V. S, Elkord E. Immun checkpoint inhibitors: recent progress and potential biomarkers. Experimental & molecular checkpoint inhibitor based immunotherapy medicine 2018; 12: 1-11 [doi:10.1038/s12276-018-0191.]
  • 21. Ruf P, Bauer H.W, Schoberth A. et al. First time intravesically administered trifunctional antibody catumaxomab in patients with recurrent non-muscle invasive bladder cancer indicates high tolerability and local immunological activity. Cancer Immunol Immunother 2021; 70: 2727–2735 [https://doi.org/10.1007/s00262-021-02930-7.]
  • 22. Liu M, Cao Z, Zhang R, Chen Y, Yang X. Injectable Supramolecular Hydrogel for Locoregional Immune Checkpoint Blockade and Enhanced Cancer Chemo-Immunotherapy. ACS Applied Materials & Interfaces 2021; 13: 33874-33884 [doi: 10.1021/acsami.1c08285.]
  • 23. Xia A, Zhang Y, Xu J, Yin T, Lu X. J. T Cell Dysfunction in Cancer Immunity and Immunotherapy. Frontiers in immunology 2019; 10: 1719 [ https://doi.org/10.3389/fimmu.2019.01719]
  • 24. Schizas D, Charalampakis N, Kole C, et al. Immunotherapy for pancreatic cancer. Cancer Treatment Reviews 2020; 86: 0305-7372 [https://doi.org/10.1016/j.ctrv.2020.102016.]
  • 25. Ribas A, Wolchok J.D. Cancer immunotherapy using checkpoint blockade. Science 2018; 359: 1350-1355 [doi: 10.1126/science.aar4060]
  • 26. Farkona S, Diamandis EP, Blasutig IM.Cancer immunotherapy: the beginning of the end of cancer? BMC Med 2016 5;14:73 [ https://doi.org/10.1186/s12916-016-0623-5]
  • 27. Ren D, Hua Y, Yu B, et al. Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Mol Cancer 2020; 19: 19 [https://doi.org/10.1186/s12943-020-1144-6.]
  • 28. Yan Y, Kumar A. B, Finnes H, et al. Combining Immune Checkpoint Inhibitors With Conventional Cancer Therapy. Frontiers in immunology 2018; 9: 1709. [https://doi.org/10.3389/fimmu.2018.01739]
  • 29. Fumet JD, Limagne E, Thibaudin M, et al. Precision medicine phase II study evaluating the efficacy of a double immunotherapy by durvalumab and tremelimumab combined with olaparib in patients with solid cancers and carriers of homologous recombination repair genes mutation in response or stable after olaparib treatment BMC Cancer 2020; 1: 748 [https://doi.org/10.1186/s12885-020-07253-x]
  • 30. Bar J, Urban D, Ofek E, et al. Neoadjuvant pembrolizumab (pempro) for early stage non - small cell lung cancer (NSCLC): Updated report of a phase I study, MK3475-223. Journal of clinical oncology 2019; 15,37: 8534-8534 [https://ascopubs.org/doi/abs/10.1200/JCO.2019.37.15_suppl.8534.]
  • 31. Singh S, Hassan D, Aldawsari H.M, Molugulu N, Shukla R, Kesharwan P. Immune checkpoint inhibitors: a promising anticancer therapy. Drug Discovery Today 2020; 25: 223-229 [https://doi.org/10.1016/j.drudis.2019.11.003]
  • 32. Byun D J, Wolchok J. D, Rosenberg L. M, Girotra M. Cancer immunotherapy-immune checkpoint blockade and associated endocrinopathies. Nat. Rev. Endocrinol 2017; 13: 195-207 [https://doi.org/10.1038/nrendo.2016.205]
  • 33. Sim G. C, Radvanyi L. The IL-2 cytokine family in cancer immunotherapy. Cytokine Growth Factor Rev. 2014; 25:. 377–390 [10.1016/j.cytogfr.2014.07.018.]
  • 34. Derynck R, Turley S.J, Akhurst R.J. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 2021; 1: 9-34 [https://doi.org/10.1038/s41571-020-0403-1]
  • 35. Shi H, Li K, Ni Y, Liang X, Zhao X. Myeloid-Derived Suppressor Cells: Implications in the Resistance of Malignant Tumors to T Cell-Based Immunotherapy. Front Cell Dev Biol 2021; 9: 707198 [doi:10.3389/fcell.2021.707198.]
  • 36. Scott A.M, Allison J.P, Wolchok J.D. Monoclonal antibodies in cancer therapy. Cancer Immun January 2012; 1: 14 [http://cancerimmunolres.aacrjournals.org/content/12/1/14.abstract]
  • 37. Galluzzi L, Garg A.D. Immunology of Cell Death in Cancer Immunotherapy Cells 2021; 10: 1208 [ https://doi.org/10.3390/cells10051208.]
  • 38. Matsui Y, Yamada T, Masuzawa N, Hamada S, Takayama K, Hiranuma O. Advanced G-CSF-producing non-small cell lung cancer-not otherwise specified, with favorable response to pembrolizumab monotherapy. Respirology Case Reports 2020; 8: 625. [https://doi.org/10.1002/rcr2.625.]
  • 39. Mignona M.D, Fedele S, Russo L, Lo. The World Cancer Report and the burden of oral cancer. 2, April 2010, European Journal of Cancer Prevention, Cilt 13, s. 139-142. Mignogna, M D; Fedele, S; Russo, L Lo. The World Cancer Report and the burden of oral cancer. European Journal of Cancer Prevention 2004; 13: 139-142
  • 40. Vanhaver C, Van der Bruggen P, Bruger A. M. MDSC in Mice and Men: Mechanisms of Immunosuppression in Cancer. Journal of Clinical Medicine 2021; 10: 2872. [doi:10.3390/jcm10132872.]
  • 41. Wu K, Lin K, Li X, et al. Redefining Tumor-Associated Macrophage Subpopulations and Functions in the Tumor Microenvironment. Frontiers in immunology 2020; 11: 1731. [ https://doi.org/10.3389/.]
  • 42. Blass E, Ott P.A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol. 2021;18(4): 215-229. [doi: 10.1038/s41571-020-00460-2.]
  • 43. Yang F, Shi K, Hao Y, et al. Cyclophosphamide loaded thermo-responsive hydrogel system synergize with a hydrogel cancer vaccine to amplify cancer immunotherapy in a prime-boost manner. Bioactive Materials 2021; 6(10): 3036-3048. [https://doi.org/10.1016/j.bioactmat.2021.03.003.]
  • 44. Xu Z, Chokkalingam N, Tello-Ruiz E, et al. A DNA-Launched Nanoparticle Vaccine Elicits CD8+ T-cell Immunity to Promote In Vivo Tumor Control. Cancer Immunol Res. 2020; 8(11): 1354-1364. [doi: 10.1158/2326-6066.CIR-20-0061.]
  • 45. Zhang H, Zheng H, Guo P, et al. Broadly Protective CD8+ T Cell Immunity to Highly Conserved Epitopes Elicited by Heat Shock Protein gp96-Adjuvanted Influenza Monovalent Split Vaccine. J Virol 2021; 95(12): e00507-21. [doi: 10.1128/JVI.00507-21.]
  • 46. Gardner T.A, Elzey B.D, Hahn N.M. Sipuleucel-T (Provenge) autologous vaccine approved for treatment of men with asymptomatic or minimally symptomatic castrate-resistant metastatic prostate cancer. Hum Vaccin Immunother 2012; 8(4): 534-9. [doi: 10.4161/hv.19795.]
  • 47. Pardi N, Hogan M, Porter F, et al. mRNA vaccines a new era in vaccinology. Nat Rev Drug Discov 2018; 17: 261–279 .[ https://doi.org/10.1038/nrd.2017.243.]
  • 48. Lauss M, Donia M, Harbst K, et al. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma. Nat. Commun 2017;8: 1738. [https://doi.org/10.1038/s41467-017-01460-0]
  • 49. Tsimberidou A.M, Levit L.A, Schilsky R.L, et al. Trial Reporting in Immuno-Oncology (TRIO): An American Society of Clinical Oncology-Society for Immunotherapy of Cancer Statement. J immunotherapy cancer 2018; 6: 108. [https://doi.org/10.1186/s40425-018-0426-7.]
  • 50. Guozhu Xie, Han Dong, Yong Liang, James Dongjoo Ham, Romee Rizwan, Jianzhu Chen. CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine 2020; 59: 2352-3964. [ https://doi.org/10.1016/j.ebiom.2020.102975.]
  • 51. Singh A.K, McGuirk J.P. CAR T cells: continuation in a revolution of immunotherapy. The Lancet Oncology 2020; 21: 168-178. [https://doi.org/10.1016/S1470-2045(19)30823-X.]
  • 52. Jin J, Cheng J, Huang M, Luo H, Zhou J. Fueling chimeric antigen receptor T cells with cytokines. American journal of cancer research 2020; 10: 4038–4055. PMID: 33414984; PMCID: PMC7783740.
  • 53. Churchill B. M, Patri P, Inrig J. K, et al. Chimeric Antigen Receptor-T Cell (CAR-T Cell) Therapy in Advanced Renal Cell Carcinoma. International Research Journal of Oncology 2021; 4: 40-48. 8https://www.journalirjo.com/index.php/IRJO/article/view/30158.]
  • 54. U.S. National Library of medicine. ClinicalTrials. Clinicaltrials.gov. https://clinicaltrials.gov/. Erişim tarihi:19 10 2021. https://clinicaltrials.gov/ct2/results?cond=Cancer&term=CAR+T&cntry=&state=&city=&dist=.
  • 55. ClinicalTrials.gov. Clinicaltrials.gov. TCR | Cancer. Erişim tarihi:21 October 2021. https://clinicaltrials.gov/ct2/results?cond=Cancer&term=TCR+&cntry=&state=&city=&dist=.
  • 56. June C. H, O'Connor R. S, Kawalekar O. U, Ghassemi S, Milone M. C. CAR T cell immunotherapy for human cancer. Science 2018; 359: 1361–1365. [https://doi.org/10.1126/science.aar6711.]
  • 57. Matosevic M..Chapter Three - Targeting natural killer cells in cancer immunotherapy. Academic Press 2022: 63-82. [https://doi.org/10.1016/B978-0-323-85781-9.00003-8.
  • 58. Amotore F, Gorvel L, Olive D. Role of Inducible Co-Stimulator (ICOS) in cancer immunotherapy. Expert Opinion on Biological Therapy 2019;20:141-150. [https://doi.org/10.1080/14712598.2020.1693540.]
  • 59. Croft M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev Immunol 2003; 3: 609–620. [https://doi.org/10.1038/nri1148.]
  • 60. Burugu S, Amanda R. D, Torsten O. N. Emerging targets in cancer immunotherapy. Seminars in Cancer Biology 2018; 52: 39-52. 8https://doi.org/10.1016/j.semcancer.2017.10.001.]
  • 61. Alves Costa Silva C, Facchinetti F, Routy B, Derosa L. New pathways in immune stimulation: targeting OX40. ESMO open 2020; 5: e000573. [https://doi.org/10.1136/esmoopen-2019-000573.]
  • 62. Ohmura H, Yamaguchi K, Hanamura F, et al. .Activation of central/effector memory T cells in advanced gastric cancer patients treated with anti programmed death-1 antibody. Journal of Clinical Oncology 2019; 37(4): 54-54 [doi: 10.1200/JCO.2019.37.4.]
  • 63. Deng J, Zhao S, Zhang X, Wang H, Zhou C, He Y. OX40 (CD134) and OX40 ligand, important immune checkpoints in cancer. Onco Targets and Therapy 2019: 7347-7363. [https://doi.org/10.2147/OTT.S214211.]
  • 64. Aspeslagh S, Postel-Vinay S, Rusakiewicz S, et al. Rationale for anti-OX40 cancer immunotherapy. European Journal of Cancer 2016; 52: 50-66. [https://doi.org/10.1016/j.ejca.2015.08.021. ISSN 0959-8049.]
  • 65. Jeong S, Park S.H. Co-Stimulatory Receptors in Cancers and Their Implications for Cancer Immunotherapy. Immune Netw 2020; 20(1): 1142986. [https://doi.org/10.4110/in.2020.20.e3.]
  • 66. ClinicalTrials. ClinicalTrials.gov. Erişim tarihi: 22 10 2021. [https://clinicaltrials.gov/ct2/results?cond=cancer&term=costimulatory+receptors&cntry=&state=&city=&dist=.
  • 67. Jonathan M, Pitt. M, Vétizou R.D, et al. Routy.Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and -Extrinsic Factors. İmmunity 2016; 44: 1255-1269. [https://doi.org/10.1016/j.immuni.2016.06.001.]
  • 68. Chen C. B, Wu M. Y, Ng C. Y, et al. Severe cutaneous adverse reactions induced by targeted anticancer therapies and immunotherapies. Cancer management and research 2018; 10: 1259–1273.[ https://doi.org/10.2147/CMAR.S163391.]
  • 69. Naing A, Hajjar J, Gulley J. L, et al. Strategies for improving the management of immune-related adverse events. Journal for immunotherapy of cancer 2020; 8: e001754 [https://doi.org/10.1136/jitc-2020-001754.]
  • 70. Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 2017; 377: 45-56 [doi: 10.1056/NEJMoa1709684.]
  • 71. Yalçın Ş, Sarı E. Kanserd bireyselleştirilmiş tedavilere genel bakış. Nuclear Medicine Seminar 2015; 2: 28-35 [doi:10.4274/nts.2015.20.]
  • 72. Kähler K. C, Hassel J. C, Heinzerling L, et al. Management of side effects ofimmune checkpoint blockade by anti-CTLA-4 and anti-PD-1antibodies in metastatic melanoma. JDDG: Journal der Deutschen Dermatologischen Gesellschaft 2016; 14(7): 662-681 [ https://doi.org/10.1111/ddg.13047]
  • 73. O'Donnell J. S, Teng M, Smyth M. J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nature reviews. Clinical oncology 2019; 16: 151–167 [https://doi.org/10.1038/s41571-018-0142-8.]
  • 74. Mechanisms of and approaches to overcoming resistance to immunotherapy. Schultz L, Gardner R. 1, 2019, Hematology. American Society of Hematology. Education Program 2019: 226–232 [https://doi.org/10.1182/hematology.2019000018.]
  • 75. Schoenfeld A. J, Hellmann M. D. Acquired Resistance to Immune Checkpoint Inhibitors. Cancer cell 2020; 37:443–455.[https://doi.org/10.1016/j.ccell.2020.03.017.]
  • 76. Kim T. K., Herbst R. S, Chen L. Defining and Understanding Adaptive Resistance in Cancer Immunotherapy. Trends in immunology 2018; 39: 624–631 [https://doi.org/10.1016/j.it.2018.05.001.]
  • 77. Gondhowiardjo S. A, Handoko Jayalie V. F, Apriantoni R, et al. Tackling Resistance to Cancer Immunotherapy: What Do We Know?. Molecules (Basel, Switzerland) 2020; 25(18): 4096 [https://doi.org/10.3390/molecules25184096.]
  • 78. Van Elsas M.J, van Hall T, Van der Burg S.H. Future Challenges in Cancer Resistance to Immunotherapy. Cancers 2020; 12: 935 [ https://doi.org/10.3390/cancers12040935.]
  • 79. Bagchi S, Yuan R, Engleman E. G. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annual review of pathology 2021; 16: 223–249 [https://doi.org/10.1146/annurev-pathol-042020-042741.]
  • 80. Tan E, El-Rayes B. Pancreatic Cancer, and Immunotherapy: Resistance Mechanisms and Proposed Solutions. Journal of gastrointestinal cancer 2019; 50: 1-8 [https://doi.org/10.1007/s12029-018-0179-z.]
  • 81. Pérez-Ruiz E, Melero I, Kopecka J, et al. Cancer immunotherapy resistance based on immune checkpoints inhibitors: Targets, biomarkers, and remedies. Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy 2020; 53: 100718 [https://doi.org/10.1016/j.drup.2020.100718.]
  • 82. Garon E. B, Hellmann M. D, Rizvi N. A, et al. Five-Year Overall Survival for Patients With Advanced Non‒Small-Cell Lung Cancer Treated With Pembrolizumab: Results From the Phase I KEYNOTE-001 Study. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2019; 37(28): 2518–2527 [https://doi.org/10.1200/JCO.19.00934]
  • 83. Cable J, Greenbaum B, Pe'er D, et al. Frontiers in cancer immunotherapy-a symposium report. Annals of the New York Academy of Sciences 2021; 1489: 30-47 [https://doi.org/10.1111/nyas.14526.]
  • 84. D'Angelo S. P, Bhatia S, Brohl A. S, et al. Avelumab in patients with previously treated metastatic Merkel cell carcinoma: long-term data and biomarker analyses from the single-arm phase 2 JAVELIN Merkel 200 trial. Journal for immunotherapy of cancer 2020; 8: e000674. [https://doi.org/10.1136/jitc-2020-000674.]
  • 85. Cancer Research İnstitute. FDA approval timeline of active immunotherapies. Erişim Tarihi: 16 Kasım 2021. https://www.cancerresearch.org/en-us/scientists/immuno-oncology-landscape/fda-approval-timeline-of-active-immunotherapies.
  • 86. Zhang Q, Ping J, Huang Z, et.al. CAR-T Cell Therapy in Cancer: Tribulations and Road Ahead. Journal of Immunology Research 2020; 11: 1924379 [https://doi.org/10.1155/2020/1924379.]
  • 87. Gao B, Sun Q. Programming gene expression in multicellular organisms for physiology modulation through engineered bacteria. Nature Communications 2021; 12(1): 2689 [https://doi.org/10.1038/s41467-021-22894-7]
  • 88. Ascierto A.P, Kirkwood J.M, Grob J.J, et al. The role of BRAF V600 Mutation in melenoma. J Transl Med 2012; 85(10): Published online 2012 [doi:-5876-10-85 10.1186/1479.]
  • 89. NCT02403193. Trial of PBF-509 and PDR001 in Patients With Advanced Non-small Cell Lung Cancer (NSCLC) (AdenONCO). ClinicalTrials.gov. 2021. https://clinicaltrials.gov/ct2/show/NCT02403193?term=COMBO+I&cond=PD1&draw=2&rank=1.
There are 89 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Revıew Artıcle
Authors

Gül Koca 0000-0001-8724-8954

Sakou Seydou This is me 0000-0003-3485-2845

Özlem Yıldırım

Publication Date March 26, 2022
Published in Issue Year 2022 Volume: 13 Issue: 1

Cite

APA Koca, G., Seydou, S., & Yıldırım, Ö. (2022). Kanser immünoterapisinde güncel yaklaşımlar ve immünoterapinin sınırlayıcı etkilerine genel bakış. Turkish Journal of Clinics and Laboratory, 13(1), 153-165. https://doi.org/10.18663/tjcl.1038881
AMA Koca G, Seydou S, Yıldırım Ö. Kanser immünoterapisinde güncel yaklaşımlar ve immünoterapinin sınırlayıcı etkilerine genel bakış. TJCL. March 2022;13(1):153-165. doi:10.18663/tjcl.1038881
Chicago Koca, Gül, Sakou Seydou, and Özlem Yıldırım. “Kanser immünoterapisinde güncel yaklaşımlar Ve immünoterapinin sınırlayıcı Etkilerine Genel bakış”. Turkish Journal of Clinics and Laboratory 13, no. 1 (March 2022): 153-65. https://doi.org/10.18663/tjcl.1038881.
EndNote Koca G, Seydou S, Yıldırım Ö (March 1, 2022) Kanser immünoterapisinde güncel yaklaşımlar ve immünoterapinin sınırlayıcı etkilerine genel bakış. Turkish Journal of Clinics and Laboratory 13 1 153–165.
IEEE G. Koca, S. Seydou, and Ö. Yıldırım, “Kanser immünoterapisinde güncel yaklaşımlar ve immünoterapinin sınırlayıcı etkilerine genel bakış”, TJCL, vol. 13, no. 1, pp. 153–165, 2022, doi: 10.18663/tjcl.1038881.
ISNAD Koca, Gül et al. “Kanser immünoterapisinde güncel yaklaşımlar Ve immünoterapinin sınırlayıcı Etkilerine Genel bakış”. Turkish Journal of Clinics and Laboratory 13/1 (March 2022), 153-165. https://doi.org/10.18663/tjcl.1038881.
JAMA Koca G, Seydou S, Yıldırım Ö. Kanser immünoterapisinde güncel yaklaşımlar ve immünoterapinin sınırlayıcı etkilerine genel bakış. TJCL. 2022;13:153–165.
MLA Koca, Gül et al. “Kanser immünoterapisinde güncel yaklaşımlar Ve immünoterapinin sınırlayıcı Etkilerine Genel bakış”. Turkish Journal of Clinics and Laboratory, vol. 13, no. 1, 2022, pp. 153-65, doi:10.18663/tjcl.1038881.
Vancouver Koca G, Seydou S, Yıldırım Ö. Kanser immünoterapisinde güncel yaklaşımlar ve immünoterapinin sınırlayıcı etkilerine genel bakış. TJCL. 2022;13(1):153-65.


e-ISSN: 2149-8296

The content of this site is intended for health care professionals. All the published articles are distributed under the terms of

Creative Commons Attribution Licence,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.