Research Article
BibTex RIS Cite

PERAKENDE SEKTÖRÜNDE RFM ANALİZİ İLE MÜŞTERİ SEGMENTASYONU

Year 2023, , 1 - 10, 06.06.2023
https://doi.org/10.55830/tje.1225620

Abstract

Hızla değişen rekabet ortamında şirketler, zamanlarının büyük bir kısmını mevcut müşterilerini uzun vadede memnun edip elde tutmak, hedef müşteri kitlesini genişletmek ve mevcut maliyetlerini düşürerek rekabet avantajı sağlamaya çalışmaktadır. İşletmelerin pazarlama stratejilerini geliştirirken geçmişte kendilerinden alışveriş yapmış müşterilerini göz ardı etmemesi gerekmektedir. Müşterilerin arasındaki benzerlikleri ve farklılıkları belirlemek, davranışlarını tahmin etmek, müşterilere daha iyi seçenekler ve fırsatlar önermek, müşteri-şirket etkileşimi için kritik bir hale gelmiştir. Bu noktadan hareketle bu çalışmada RFM metrikleri kullanılarak, mevcut müşterinin davranışlarını tanımlamak, müşterileri segmentlere ayırmak ve pazarlama bakış açısıyla bu segmentler için stratejiler oluşturmak amaçlanmıştır. Bunun için Türkiye’de faaliyetini sürdüren bir tekstil perakende firmasının verileri kullanılmıştır. Bu verileri analiz etmek için RFM tekniği kullanılmıştır. Çalışma sonuçlarına göre toplam 5 müşteri kümesi oluşturulmuştur. Şirket açısından en karlı müşteri grubunun 2 numaralı müşteri grubu olduğu, en az karlı ve yakın zamanda neredeyse hiç alışveriş yapmamış kayıp müşteri olarak adlandırdığımız müşteri grubunun ise 4. ve 5. müşteri grupları olduğu belirlenmiştir.

Supporting Institution

Yıldız Teknik Üniversitesi

References

  • Başkol, M. (2020). Determining customer segmentation by using rfm and correspondence analysis. Business and Management Studies an International Journal, 8(4), 902-928.
  • Chiang, W. Y. (2019). Establishing high value markets for data-driven customer relationship management systems: An empirical case study. Kybernetes, 48(3), 650–662.
  • Christy, A. J., Umamakeswari, A., Priyatharsini, L., & Neyaa, A. (2021). RFM ranking–An effective approach to customer segmentation. Journal of King Saud University-Computer and Information Sciences, 33(10), 1251-1257.
  • Chuang, H. M., & Shen, C. C. (2008, July). A study on the applications of data mining techniques to enhance customer lifetime value-based on the department store industry. In 2008 International Conference on Machine Learning and Cybernetics (1, 168-173). IEEE.
  • Ekergil, V., & Ersoy N. (2016). B2B/Endüstriyel pazarlar için anahtar müşteri yönetimine ilişkin müşteri yaşam boyu değerinin hesaplanmasında muhasebe ve pazarlamanın rolü. İşletme ve Ekonomi Araştırmaları Dergisi, 7(4), 159-180.
  • Erpolat Taşabat, S., & Akca, E. (2020). Recycle project with RFM analysis in ındustrial material sector. Sigma Journal of Engineering and Natural Sciences, 38(4), 1681-1692.
  • Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques (Third Edition). Waltham: Morgan Kaufmann Publisher.
  • Hughes, A. M. (1996). Boosting reponse with RFM. Mark. Tools, 5, 4-10.
  • Khajvand, M., Zolfaghar, K., Ashoori, S., & Alizadeh, S. (2011). Estimating customer lifetime value based on RFM analysis of customer purchase behavior: Case study. Procedia Computer Science, 3, 57-63.
  • Morisada, M., Miwa, Y., & Dahana, W. D. (2019). Identifying valuable customer segments in online fashion markets: An implication for customer tier programs. Electronic Commerce Research and Applications, 33, 1-11.
  • Murray, P.W., Agard, B., & Barajas, M.A. (2017). Market segmentation through data mining: A method to extract behaviors from a noisy data set. Computers and Industrial Engineeering, 109, 233-252
  • Özkan, P., & Kocakoç, İ. D. (1-4 Mayıs 2019). Sağlık sektöründe LRFM analizi ile pazar bölümlendirme. PPAD Pazarlama Kongresi, Kuşadası: Türkiye.
  • Paker, N., & Vural, C. A. (2016). Customer segmentation for marinas: Evaluating marinas as destinations. Tourism Management, 56, 156-171.
  • Safari, F., Safari, N., & Montazer, G. A. (2016). Customer lifetime value determination based on RFM model. Marketing Intelligence and Planning, 34(4), 446-461.
  • Sarvari, P. A., Ustundag, A., & Takci, H. (2016). Performance evaluation of different customer segmentation approaches based on RFM and demographics analysis. Kybernetes, 45(7), 1129-1157.
  • Wei, J. T., Lin, S. Y., & Wu, H. H. (2010). A review of the application of RFM model. African Journal of Business Management, 4(19), 4199-4206.
  • You, Z., Si, Y. W., Zhang, D., Zeng X. X., Leung, S.C.H., & Li, T. (2015). A decision-making framework for precision marketing. Expert Systems with Applications, 42 (7), 3357-3367.
  • Zabkowski, T. S. (2016). RFM approach for telecom insolvency modeling. Kybernetes, 45(5), 815-827.
  • Zalaghi, Z., & Abbasnejad Varzi, Y. (2014). Measuring customer loyalty using an extended RFM and clustering technique. Management Science Letters, 4(5), 905-912.

CUSTOMER SEGMENTATION WITH RFM ANALYSIS IN THE RETAIL INDUSTRY

Year 2023, , 1 - 10, 06.06.2023
https://doi.org/10.55830/tje.1225620

Abstract

Companies in a rapidly changing competitive environment; to satisfy and retain their
existing customers in the long term and tries to expand its target customer base and provide
competitive advantage by reducing its current costs. While developing their marketing
strategies, businesses should not ignore their customers who have purchased from them
in the past. Identifying similarities and differences among customers, predicting their
behavior, suggesting better options and opportunities to customers has become critical to
customer-company interaction. From this point of view, in this study, it is aimed to define
the behaviors of the existing customers, to segment the customers and to interpret them
from a marketing point of view by using RFM metrics. To achieve this goal, data were
obtained from a textile retail business operating in Turkey. RFM technique was used to
analyze the data procured. Five different customer groups were created as the result of the
study. As the customer group number two was the most profitable customer group,
customer groups number four and five was the least profitable and customer loyalty was
very low.

References

  • Başkol, M. (2020). Determining customer segmentation by using rfm and correspondence analysis. Business and Management Studies an International Journal, 8(4), 902-928.
  • Chiang, W. Y. (2019). Establishing high value markets for data-driven customer relationship management systems: An empirical case study. Kybernetes, 48(3), 650–662.
  • Christy, A. J., Umamakeswari, A., Priyatharsini, L., & Neyaa, A. (2021). RFM ranking–An effective approach to customer segmentation. Journal of King Saud University-Computer and Information Sciences, 33(10), 1251-1257.
  • Chuang, H. M., & Shen, C. C. (2008, July). A study on the applications of data mining techniques to enhance customer lifetime value-based on the department store industry. In 2008 International Conference on Machine Learning and Cybernetics (1, 168-173). IEEE.
  • Ekergil, V., & Ersoy N. (2016). B2B/Endüstriyel pazarlar için anahtar müşteri yönetimine ilişkin müşteri yaşam boyu değerinin hesaplanmasında muhasebe ve pazarlamanın rolü. İşletme ve Ekonomi Araştırmaları Dergisi, 7(4), 159-180.
  • Erpolat Taşabat, S., & Akca, E. (2020). Recycle project with RFM analysis in ındustrial material sector. Sigma Journal of Engineering and Natural Sciences, 38(4), 1681-1692.
  • Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques (Third Edition). Waltham: Morgan Kaufmann Publisher.
  • Hughes, A. M. (1996). Boosting reponse with RFM. Mark. Tools, 5, 4-10.
  • Khajvand, M., Zolfaghar, K., Ashoori, S., & Alizadeh, S. (2011). Estimating customer lifetime value based on RFM analysis of customer purchase behavior: Case study. Procedia Computer Science, 3, 57-63.
  • Morisada, M., Miwa, Y., & Dahana, W. D. (2019). Identifying valuable customer segments in online fashion markets: An implication for customer tier programs. Electronic Commerce Research and Applications, 33, 1-11.
  • Murray, P.W., Agard, B., & Barajas, M.A. (2017). Market segmentation through data mining: A method to extract behaviors from a noisy data set. Computers and Industrial Engineeering, 109, 233-252
  • Özkan, P., & Kocakoç, İ. D. (1-4 Mayıs 2019). Sağlık sektöründe LRFM analizi ile pazar bölümlendirme. PPAD Pazarlama Kongresi, Kuşadası: Türkiye.
  • Paker, N., & Vural, C. A. (2016). Customer segmentation for marinas: Evaluating marinas as destinations. Tourism Management, 56, 156-171.
  • Safari, F., Safari, N., & Montazer, G. A. (2016). Customer lifetime value determination based on RFM model. Marketing Intelligence and Planning, 34(4), 446-461.
  • Sarvari, P. A., Ustundag, A., & Takci, H. (2016). Performance evaluation of different customer segmentation approaches based on RFM and demographics analysis. Kybernetes, 45(7), 1129-1157.
  • Wei, J. T., Lin, S. Y., & Wu, H. H. (2010). A review of the application of RFM model. African Journal of Business Management, 4(19), 4199-4206.
  • You, Z., Si, Y. W., Zhang, D., Zeng X. X., Leung, S.C.H., & Li, T. (2015). A decision-making framework for precision marketing. Expert Systems with Applications, 42 (7), 3357-3367.
  • Zabkowski, T. S. (2016). RFM approach for telecom insolvency modeling. Kybernetes, 45(5), 815-827.
  • Zalaghi, Z., & Abbasnejad Varzi, Y. (2014). Measuring customer loyalty using an extended RFM and clustering technique. Management Science Letters, 4(5), 905-912.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Business Administration
Journal Section Articles
Authors

Hayriye Şentürk 0000-0002-9523-8745

Selçuk Alp 0000-0002-6545-4287

Early Pub Date June 1, 2023
Publication Date June 6, 2023
Submission Date December 28, 2022
Published in Issue Year 2023

Cite

APA Şentürk, H., & Alp, S. (2023). PERAKENDE SEKTÖRÜNDE RFM ANALİZİ İLE MÜŞTERİ SEGMENTASYONU. İstanbul Ticaret Üniversitesi Girişimcilik Dergisi, 7(13), 1-10. https://doi.org/10.55830/tje.1225620