Research Article
BibTex RIS Cite
Year 2022, , 158 - 166, 20.06.2022
https://doi.org/10.17557/tjfc.1107691

Abstract

References

  • AACC. 2000. Approved Methods of American Association of Cereal Chemists. 10th Ed. American Association of Cereal Chemists, Minnesota, USA.
  • AACC. 2010. American Association of Cereal Chemists International. Approved Methods of Analysis, 11th ed. AACC International, St. Paul.
  • Akgun, R., T. Dokuyucu and U. Sevilmis. 2019. Determination of yield performance of some grain maize varieties under double crop conditions in Çukurova. IJEMAR, 2(2):166-175 (in Turkish).
  • Ali, Q., M. Ashraf and F. Anwar. 2010. Seed composition and seed oil antioxidant activity of maizeunder water stress. J Am Oil Chem Soc, 87:1179-1187.
  • Amegbor, I.K., A. Van Biljon, N. Shargie, A. Tarekegne and M.T. Labuschagne, (2022). Heritability and associations among grain yield and quality traits in quality protein maize (QPM) and non-QPM hybrids. Plants, 11(6): 713.
  • Arvouet-Grand, A., B. Vennat, A. Pourrat and P. Legret. 1994. Standardisation d`un extrait de propolis et identification des principaux constituants. J. Pharm. Belg, 49: 462-468.
  • Aryal, S., M.K. Baniya, K. Danekhu, P. Kunwar, R. Gurung and N. Koirala. 2019. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 8(4): 96.
  • Bae, H.H., G. Yi, Y.S. Go, J.Y. Ha, Y. Choi, J.H. Son and S. Lee. 2021. Measuring antioxidant activity in yellow corn (Zea mays L.) inbreds from three different geographic regions. Appl. Biol. Chem. 64(1): 1-8.
  • Balconi, C., H. Hartings, M. Lauria, R. Pirona, V. Rossi, and M. Motto. 2007. Gene discovery to improve maize grain quality traits. Maydica, 52(3): 357.
  • Bate Smith, E.C. 1975. Phytochemistry of proanthocyanidins. Phytochemistry 14: 1107-1113.
  • Bayisa, M., B. Tesso and A. Atilaw. 2022. Association of seed yield and yield traits of maize (Zea mays L.) in ınbred lines at Bako, Ethiopia. AJBES, 8(1): 8-16.
  • Beckles, D.M. and M. Thitisaksakul. 2014. How environmental stress affects starch composition and functionality in cereal endosperm. Starch‐Starke, 66(1-2): 58-71.
  • Biesalski, H.K. and J, Tinz. 2018. Micronutrients in the life cycle: requirements and sufficient supply. NFSJ, 11:1-11.
  • Concon J.M. and D. Soltess. 1973. Rapid micro Kjeldahl digestion of cereal grains and other biological materials. Anal. Biochem, 53(1): 35-41.
  • Dykes, L. and L.W. Rooney. 2007. Phenolic compounds in cereal grains and their health benefits. CFW, 52(3), 105-111.
  • Erawati, B.T.R., Y. Triguna, A. Hipi and E. Widiastuti. 2021. Adaptation of superior maize varieties high yield and biomass the availability of animal feed. In IOP Conf.Series: Earth and Environmental Science, 911(1): 012032.
  • Fahy, E., D. Cotter, M. Sud. and S. Subramaniam. 2011. Lipid classification, structures and tools. Biochim Biophys Acta Mol Cell Biol Lipids, 1811:637-647.
  • FAO, 2020. Statistical Databases. http://faostat.fao.org/site/567/default.aspx# ancor. Accessed on 1st April 2022.
  • Ferreira, C.F., A.C.V. Motta, S.A. Prior, C.B. Reissman, N.Z.D. Santos and J. Gabardo. (2012). Influence of corn (Zea mays L.) cultivar development on grain nutrient concentration. Int. J. Agron, 1-7.
  • Gezer, K., M.E., Duru, I. Kıvrak, A. Türkoğlu and N. Mercan, 2006. Free-radical scavenging capacity and antimicrobial activity of wild edible mushroom of Turkey. African Journal of Biotechnology 5(20): 1924-1928.
  • Gu, R., F. Chen, B. Liu. X. Wang, J. Liu, P. Li and L. Yuan. 2015. Comprehensive phenotypic analysis and quantitative trait locus identification for grain mineral concentration, content, and yield in maize (Zea mays L.). Theor. Appl. Genet, 128(9): 1777-1789.
  • Idikut, L., M. Ekinci and C. Gencolan. 2020. Determination of ear characteristics and grain quality criteria of hybrid corn varieties. NEJOSTECH, 9(2): 142-153 (in Turkish).
  • Ilker, E., F. Aykut Tonk, Ö. Caylak, M. Tosun and I. Özmen. 2009. Assessment of Genotype X environment interactions for grain yield in maize hybrids using AMMI and GGE Biplot Analyses. Turk J Field Crops, 14(2): 123-135.
  • Irinkoyenikan O.A., O.S. Gbadamosi, S.I. Ibironke C.T. Akanbi and K.A. Taiwo. 2016. Comparative analysis of physico-chemical properties and amino acids profile of three tropical maize hybrid cultivars in Nigeria. Nutr. Food Sci., 46 (5): 695-705.
  • JMP. 2020. JMP Users Guide. Version 13.0.0; SAS Institute Inc.: Cary, NC, USA, 2020
  • Kresovic, B., B. Gajic, A. Tapanarova and G. Dugalic. (2018). How irrigation water affects the yield and nutritional quality of maize (Zea mays L.) in a temperate climate. Pol. J. Environ. Stud, 27(3): 1123-1131.
  • Lascano, C.E. and Cardenas, E. 2010. Alternatives for methane emission mitigation in livestock systems. Rev. Bras. Zootec., 39: 175-182.
  • Lee, S.H.Y., D.J. Humphries, D.A. Cockman, D.I. Givens and J.P.E. Spencer. 2017. Accumulation of citrus flavanones in bovine milk following citrus pulp incorporation into the diet of dairy cows. EC Nutrition. 7(4):143-154.
  • Martin, C., G. Copani and V. Niderkorn. 2016. Impacts of forage legumes on intake, digestion and methane emissions in ruminants. J of the Int Leg Soc. 12:24-25.
  • Martínez-Martínez, R., A.M. Vera-Guzman, J.L. Chávez-Servia, E.N.A. Bolanos, J.C. Carrillo-Rodríguez and A. Perez-Herrera. 2019. Bioactive compounds and antioxidant activities in pigmented maize landraces. Interciencia, 44(9): 549-556.
  • Mut, Z, Ö.D. Erbas Kose and H. Akay. 2017. Determination of grain yield and quality traits of some bread wheat (Triticum aestivum L.) varieties. Anadolu Journal of Agricultural Sci., 32 (2017) 85-95 (in Turkish).
  • Nawaz, H., M.A. Shad and Z. Batool. 2013. Inter-varietal variation in biochemical, phytochemical and antioxidant composition of maize (Zea mays L.) grains. Food Sci. Technol. Res. 19(6): 1133-1140.
  • Ndukwe, O.K., H.O. Edeoga and G. Omosun. 2015. Varietal differences in some nutritional composition of ten maize (Zea mays L.) varieties grown in Nigeria. IJARR, 3(5): 1-11.
  • Neeraja, C.N., V. Ravindra, S. Babu Ram, F. Hossain, K. Hariprasanna, B.S. Rajpurohit, T. Longvah, K.S. Prasad, J.S. Sandhu and S.K. Datta. 2017. Biofortification in cereals: progress and prospects. Curr Sci, 113:1050-1057.
  • Olsen S.R. and L.E. Sommers. 1982. Phosphorus. In: A.L. Page (Eds) Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, Madison,WI.
  • Ozcan, S. 2009. Corn, Indispensable crop of the modern world: Contribution of genetically modified (transgenic) corn on agricultural production. Turkish Journal of Scientific Reviews, 2(2): 1-34 (in Turkish).
  • Ozdemir E. and B. Sade, 2019. Genetically analysis of yield and yield components in dent corn genotypes (Zea mays indentata Sturt.). Journal of Agricultural Faculty of Bursa Uludag University, 33(1): 83-92 (in Turkish).
  • Radosavljevic, M., M. Milašinovic-Seremesic, D. Terzic, G. Todorovic, Z. Pajic, M. Filipovic and S. Mladenovic-Drinic, 2012. Effects of hybrid on maize grain and plant carbohydrates. Genetika, 44(3), 649-659.
  • Sahin, M. and B. Kara. 2021. Evaluating of the Grain Corn Cultivars Performances Suitable for Burdur Conditions. J. Eng. Environ. Sci, 3(2): 87-90.
  • Shah, T.R., K. Prasad, and P. Kumar. 2016. Maize-A potential source of human nutrition and health: A review. Cogent Food Agric, 2: 1-9.
  • Shahidi, F. 2009. Nutraceuticals and functional foods: Whole versus processed foods. Trends Food Sci Technol, 20: 376-387.
  • Thakur, A., R.P. Sharma, N.K. Sankhyan and R. Kumar. 2021. Maize grain quality as influenced by 46 years’ continuous application of fertilizers, farmyard manure (FYM), and lime in an Alfisol of North-western Himalayas. Commun Soil Sci Plant Anal, 52(2): 149-160.
  • Ullah, I., M. Ali, and A. Farooqi. 2010. Chemical and nutritional properties of some maize (Zea mays L.) varieties grown in NWFP, Pakistan. Pak J Nutr, 9(11): 1113-1117.
  • Uysal, M. 2019. Determination of inheritance parameters in maize (Zea mays l.) lines and hybrids developed for our country main product conditions. Graduate School of Natural and Applied Science of Selçuk University the Degree of Master of Science in Field Crops Department, MS Thesis, Turkey (in Turkish).
  • Van Soest P.J., J.B. Robertson and B.A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. JDS, 74(10): 3583-3597.
  • Videnovic, Z., Z. Jovanovic Z. Duvanovic, M. Simic, J. Srdic, V. Dragicevic, I. Spasojevic. 2013. Effect of long term crop rotation and fertiliser application on maize productivity. Turk J Field Crops, 18(2): 233-237.
  • Welch, R.M. and R.D., Graham. 2004. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot., 55(396): 353-364.
  • Welch, R.W. 1977. A micro-method for the estimation of oil content and composition in seed crops. JSFA, 28(7): 635-638.
  • White, P.J. and LA. Johnsan. 2003. Corn Chemistry and Technology. American Association of Cereal Chemists. St. Paul, MN, USA
  • Yan, W. and N.A. Tinker. 2006. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci., 86(3): 623-645.
  • Yousaf, M.I., M.H. Bhatti, A. Ghani, A. Shehzad, A. Hussain, R. Shahzad and N. Akhter. 2021. Variations among maize (Zea mays L.) hybrids in response to heat stress: hybrids selection criteria. Turk J Field Crops, 26(1): 8-17.

DETERMINING THE GRAIN YIELD AND NUTRITIONAL COMPOSITION OF MAIZE CULTIVARS IN DIFFERENT GROWING GROUPS

Year 2022, , 158 - 166, 20.06.2022
https://doi.org/10.17557/tjfc.1107691

Abstract

Due to its adaptability to different climates, short growing period, high photosynthetic capacity and yield, maize is an important crop widely grown all over the world. This study was conducted to determine grain yield and some nutrition traits of 18 maize cultivars in Bilecik ecological conditions in 2019 and 2020 years. Experiments were carried out in randomized complete block design with three replications. There were significant (P<0.01) differences between cultivars in terms of grain yield and all quality traits. There were significant differences between years in terms of investigated traits except for potassium, neutral detergent fiber, total phenolic and ash content. According to the two year-average; grain yield, test weight, thousand-grain weight, ash, fat, protein, starch, acid detergent fiber, neutral detergent fiber and total phenolic of the maize cultivars were 13.00 ton ha-1, 73.85 kg, 317.76 g, 1.59%, 5.95%, 11.22%, 65.69%, 4.25%, 15.17%, 7.16 mg GA/g whereas condensed tannin, free radical scavenging activity, total flavonoid, potassium, phosphorus, magnesium, zinc, iron, manganese and copper content were 0.39%, 7.97%, 0.48 mg QE/g, 4.24 g kg-1, 3.58 g kg-1, 1.24 g kg-1, 2.36 g 100g-1, 0.96 g 100g-1, 0.67 g 100g-1 and 0.20 g 100g-1, respectively. According to the Biplot graph, the ADA-9510, SY-Inova, SY-Gladius, Kalideas, Dracma, Kerbanis and Keravnos cultivars were prominent in terms of grain yield while Arifiye, SY-Antex, Kolessaus and Sakarya cultivars were prominent in terms of many quality traits such as PC, FC, AC, TF, TW, ADF, K, P, Mg, Fe, Zn and Mn.

References

  • AACC. 2000. Approved Methods of American Association of Cereal Chemists. 10th Ed. American Association of Cereal Chemists, Minnesota, USA.
  • AACC. 2010. American Association of Cereal Chemists International. Approved Methods of Analysis, 11th ed. AACC International, St. Paul.
  • Akgun, R., T. Dokuyucu and U. Sevilmis. 2019. Determination of yield performance of some grain maize varieties under double crop conditions in Çukurova. IJEMAR, 2(2):166-175 (in Turkish).
  • Ali, Q., M. Ashraf and F. Anwar. 2010. Seed composition and seed oil antioxidant activity of maizeunder water stress. J Am Oil Chem Soc, 87:1179-1187.
  • Amegbor, I.K., A. Van Biljon, N. Shargie, A. Tarekegne and M.T. Labuschagne, (2022). Heritability and associations among grain yield and quality traits in quality protein maize (QPM) and non-QPM hybrids. Plants, 11(6): 713.
  • Arvouet-Grand, A., B. Vennat, A. Pourrat and P. Legret. 1994. Standardisation d`un extrait de propolis et identification des principaux constituants. J. Pharm. Belg, 49: 462-468.
  • Aryal, S., M.K. Baniya, K. Danekhu, P. Kunwar, R. Gurung and N. Koirala. 2019. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 8(4): 96.
  • Bae, H.H., G. Yi, Y.S. Go, J.Y. Ha, Y. Choi, J.H. Son and S. Lee. 2021. Measuring antioxidant activity in yellow corn (Zea mays L.) inbreds from three different geographic regions. Appl. Biol. Chem. 64(1): 1-8.
  • Balconi, C., H. Hartings, M. Lauria, R. Pirona, V. Rossi, and M. Motto. 2007. Gene discovery to improve maize grain quality traits. Maydica, 52(3): 357.
  • Bate Smith, E.C. 1975. Phytochemistry of proanthocyanidins. Phytochemistry 14: 1107-1113.
  • Bayisa, M., B. Tesso and A. Atilaw. 2022. Association of seed yield and yield traits of maize (Zea mays L.) in ınbred lines at Bako, Ethiopia. AJBES, 8(1): 8-16.
  • Beckles, D.M. and M. Thitisaksakul. 2014. How environmental stress affects starch composition and functionality in cereal endosperm. Starch‐Starke, 66(1-2): 58-71.
  • Biesalski, H.K. and J, Tinz. 2018. Micronutrients in the life cycle: requirements and sufficient supply. NFSJ, 11:1-11.
  • Concon J.M. and D. Soltess. 1973. Rapid micro Kjeldahl digestion of cereal grains and other biological materials. Anal. Biochem, 53(1): 35-41.
  • Dykes, L. and L.W. Rooney. 2007. Phenolic compounds in cereal grains and their health benefits. CFW, 52(3), 105-111.
  • Erawati, B.T.R., Y. Triguna, A. Hipi and E. Widiastuti. 2021. Adaptation of superior maize varieties high yield and biomass the availability of animal feed. In IOP Conf.Series: Earth and Environmental Science, 911(1): 012032.
  • Fahy, E., D. Cotter, M. Sud. and S. Subramaniam. 2011. Lipid classification, structures and tools. Biochim Biophys Acta Mol Cell Biol Lipids, 1811:637-647.
  • FAO, 2020. Statistical Databases. http://faostat.fao.org/site/567/default.aspx# ancor. Accessed on 1st April 2022.
  • Ferreira, C.F., A.C.V. Motta, S.A. Prior, C.B. Reissman, N.Z.D. Santos and J. Gabardo. (2012). Influence of corn (Zea mays L.) cultivar development on grain nutrient concentration. Int. J. Agron, 1-7.
  • Gezer, K., M.E., Duru, I. Kıvrak, A. Türkoğlu and N. Mercan, 2006. Free-radical scavenging capacity and antimicrobial activity of wild edible mushroom of Turkey. African Journal of Biotechnology 5(20): 1924-1928.
  • Gu, R., F. Chen, B. Liu. X. Wang, J. Liu, P. Li and L. Yuan. 2015. Comprehensive phenotypic analysis and quantitative trait locus identification for grain mineral concentration, content, and yield in maize (Zea mays L.). Theor. Appl. Genet, 128(9): 1777-1789.
  • Idikut, L., M. Ekinci and C. Gencolan. 2020. Determination of ear characteristics and grain quality criteria of hybrid corn varieties. NEJOSTECH, 9(2): 142-153 (in Turkish).
  • Ilker, E., F. Aykut Tonk, Ö. Caylak, M. Tosun and I. Özmen. 2009. Assessment of Genotype X environment interactions for grain yield in maize hybrids using AMMI and GGE Biplot Analyses. Turk J Field Crops, 14(2): 123-135.
  • Irinkoyenikan O.A., O.S. Gbadamosi, S.I. Ibironke C.T. Akanbi and K.A. Taiwo. 2016. Comparative analysis of physico-chemical properties and amino acids profile of three tropical maize hybrid cultivars in Nigeria. Nutr. Food Sci., 46 (5): 695-705.
  • JMP. 2020. JMP Users Guide. Version 13.0.0; SAS Institute Inc.: Cary, NC, USA, 2020
  • Kresovic, B., B. Gajic, A. Tapanarova and G. Dugalic. (2018). How irrigation water affects the yield and nutritional quality of maize (Zea mays L.) in a temperate climate. Pol. J. Environ. Stud, 27(3): 1123-1131.
  • Lascano, C.E. and Cardenas, E. 2010. Alternatives for methane emission mitigation in livestock systems. Rev. Bras. Zootec., 39: 175-182.
  • Lee, S.H.Y., D.J. Humphries, D.A. Cockman, D.I. Givens and J.P.E. Spencer. 2017. Accumulation of citrus flavanones in bovine milk following citrus pulp incorporation into the diet of dairy cows. EC Nutrition. 7(4):143-154.
  • Martin, C., G. Copani and V. Niderkorn. 2016. Impacts of forage legumes on intake, digestion and methane emissions in ruminants. J of the Int Leg Soc. 12:24-25.
  • Martínez-Martínez, R., A.M. Vera-Guzman, J.L. Chávez-Servia, E.N.A. Bolanos, J.C. Carrillo-Rodríguez and A. Perez-Herrera. 2019. Bioactive compounds and antioxidant activities in pigmented maize landraces. Interciencia, 44(9): 549-556.
  • Mut, Z, Ö.D. Erbas Kose and H. Akay. 2017. Determination of grain yield and quality traits of some bread wheat (Triticum aestivum L.) varieties. Anadolu Journal of Agricultural Sci., 32 (2017) 85-95 (in Turkish).
  • Nawaz, H., M.A. Shad and Z. Batool. 2013. Inter-varietal variation in biochemical, phytochemical and antioxidant composition of maize (Zea mays L.) grains. Food Sci. Technol. Res. 19(6): 1133-1140.
  • Ndukwe, O.K., H.O. Edeoga and G. Omosun. 2015. Varietal differences in some nutritional composition of ten maize (Zea mays L.) varieties grown in Nigeria. IJARR, 3(5): 1-11.
  • Neeraja, C.N., V. Ravindra, S. Babu Ram, F. Hossain, K. Hariprasanna, B.S. Rajpurohit, T. Longvah, K.S. Prasad, J.S. Sandhu and S.K. Datta. 2017. Biofortification in cereals: progress and prospects. Curr Sci, 113:1050-1057.
  • Olsen S.R. and L.E. Sommers. 1982. Phosphorus. In: A.L. Page (Eds) Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, Madison,WI.
  • Ozcan, S. 2009. Corn, Indispensable crop of the modern world: Contribution of genetically modified (transgenic) corn on agricultural production. Turkish Journal of Scientific Reviews, 2(2): 1-34 (in Turkish).
  • Ozdemir E. and B. Sade, 2019. Genetically analysis of yield and yield components in dent corn genotypes (Zea mays indentata Sturt.). Journal of Agricultural Faculty of Bursa Uludag University, 33(1): 83-92 (in Turkish).
  • Radosavljevic, M., M. Milašinovic-Seremesic, D. Terzic, G. Todorovic, Z. Pajic, M. Filipovic and S. Mladenovic-Drinic, 2012. Effects of hybrid on maize grain and plant carbohydrates. Genetika, 44(3), 649-659.
  • Sahin, M. and B. Kara. 2021. Evaluating of the Grain Corn Cultivars Performances Suitable for Burdur Conditions. J. Eng. Environ. Sci, 3(2): 87-90.
  • Shah, T.R., K. Prasad, and P. Kumar. 2016. Maize-A potential source of human nutrition and health: A review. Cogent Food Agric, 2: 1-9.
  • Shahidi, F. 2009. Nutraceuticals and functional foods: Whole versus processed foods. Trends Food Sci Technol, 20: 376-387.
  • Thakur, A., R.P. Sharma, N.K. Sankhyan and R. Kumar. 2021. Maize grain quality as influenced by 46 years’ continuous application of fertilizers, farmyard manure (FYM), and lime in an Alfisol of North-western Himalayas. Commun Soil Sci Plant Anal, 52(2): 149-160.
  • Ullah, I., M. Ali, and A. Farooqi. 2010. Chemical and nutritional properties of some maize (Zea mays L.) varieties grown in NWFP, Pakistan. Pak J Nutr, 9(11): 1113-1117.
  • Uysal, M. 2019. Determination of inheritance parameters in maize (Zea mays l.) lines and hybrids developed for our country main product conditions. Graduate School of Natural and Applied Science of Selçuk University the Degree of Master of Science in Field Crops Department, MS Thesis, Turkey (in Turkish).
  • Van Soest P.J., J.B. Robertson and B.A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. JDS, 74(10): 3583-3597.
  • Videnovic, Z., Z. Jovanovic Z. Duvanovic, M. Simic, J. Srdic, V. Dragicevic, I. Spasojevic. 2013. Effect of long term crop rotation and fertiliser application on maize productivity. Turk J Field Crops, 18(2): 233-237.
  • Welch, R.M. and R.D., Graham. 2004. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot., 55(396): 353-364.
  • Welch, R.W. 1977. A micro-method for the estimation of oil content and composition in seed crops. JSFA, 28(7): 635-638.
  • White, P.J. and LA. Johnsan. 2003. Corn Chemistry and Technology. American Association of Cereal Chemists. St. Paul, MN, USA
  • Yan, W. and N.A. Tinker. 2006. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci., 86(3): 623-645.
  • Yousaf, M.I., M.H. Bhatti, A. Ghani, A. Shehzad, A. Hussain, R. Shahzad and N. Akhter. 2021. Variations among maize (Zea mays L.) hybrids in response to heat stress: hybrids selection criteria. Turk J Field Crops, 26(1): 8-17.
There are 51 citations in total.

Details

Primary Language English
Subjects Agronomy
Journal Section Articles
Authors

Zeki Mut 0000-0002-1465-3630

Yusuf Murat Kardeş 0000-0001-7144-9612

Özge Doğanay Erbaş Köse 0000-0003-0429-3325

Publication Date June 20, 2022
Published in Issue Year 2022

Cite

APA Mut, Z., Kardeş, Y. M., & Erbaş Köse, Ö. D. (2022). DETERMINING THE GRAIN YIELD AND NUTRITIONAL COMPOSITION OF MAIZE CULTIVARS IN DIFFERENT GROWING GROUPS. Turkish Journal Of Field Crops, 27(1), 158-166. https://doi.org/10.17557/tjfc.1107691
AMA Mut Z, Kardeş YM, Erbaş Köse ÖD. DETERMINING THE GRAIN YIELD AND NUTRITIONAL COMPOSITION OF MAIZE CULTIVARS IN DIFFERENT GROWING GROUPS. TJFC. June 2022;27(1):158-166. doi:10.17557/tjfc.1107691
Chicago Mut, Zeki, Yusuf Murat Kardeş, and Özge Doğanay Erbaş Köse. “DETERMINING THE GRAIN YIELD AND NUTRITIONAL COMPOSITION OF MAIZE CULTIVARS IN DIFFERENT GROWING GROUPS”. Turkish Journal Of Field Crops 27, no. 1 (June 2022): 158-66. https://doi.org/10.17557/tjfc.1107691.
EndNote Mut Z, Kardeş YM, Erbaş Köse ÖD (June 1, 2022) DETERMINING THE GRAIN YIELD AND NUTRITIONAL COMPOSITION OF MAIZE CULTIVARS IN DIFFERENT GROWING GROUPS. Turkish Journal Of Field Crops 27 1 158–166.
IEEE Z. Mut, Y. M. Kardeş, and Ö. D. Erbaş Köse, “DETERMINING THE GRAIN YIELD AND NUTRITIONAL COMPOSITION OF MAIZE CULTIVARS IN DIFFERENT GROWING GROUPS”, TJFC, vol. 27, no. 1, pp. 158–166, 2022, doi: 10.17557/tjfc.1107691.
ISNAD Mut, Zeki et al. “DETERMINING THE GRAIN YIELD AND NUTRITIONAL COMPOSITION OF MAIZE CULTIVARS IN DIFFERENT GROWING GROUPS”. Turkish Journal Of Field Crops 27/1 (June 2022), 158-166. https://doi.org/10.17557/tjfc.1107691.
JAMA Mut Z, Kardeş YM, Erbaş Köse ÖD. DETERMINING THE GRAIN YIELD AND NUTRITIONAL COMPOSITION OF MAIZE CULTIVARS IN DIFFERENT GROWING GROUPS. TJFC. 2022;27:158–166.
MLA Mut, Zeki et al. “DETERMINING THE GRAIN YIELD AND NUTRITIONAL COMPOSITION OF MAIZE CULTIVARS IN DIFFERENT GROWING GROUPS”. Turkish Journal Of Field Crops, vol. 27, no. 1, 2022, pp. 158-66, doi:10.17557/tjfc.1107691.
Vancouver Mut Z, Kardeş YM, Erbaş Köse ÖD. DETERMINING THE GRAIN YIELD AND NUTRITIONAL COMPOSITION OF MAIZE CULTIVARS IN DIFFERENT GROWING GROUPS. TJFC. 2022;27(1):158-66.

Turkish Journal of Field Crops is published by the Society of Field Crops Science and issued twice a year.
Owner : Prof. Dr. Behçet KIR
Ege University, Faculty of Agriculture,Department of Field Crops
Editor in Chief : Prof. Dr. Emre ILKER
Address : 848 sok. 2. Beyler İşhanı No:72, Kat:3 D.313 35000 Konak-Izmir, TURKEY
Email :  turkishjournaloffieldcrops@gmail.com contact@field-crops.org
Tel : +90 232 3112679
Tel/Fax : : +90 232 3432474