Research Article
BibTex RIS Cite

Year 2025, Volume: 30 Issue: 1, 164 - 174, 23.06.2025
https://doi.org/10.17557/tjfc.1671073

Abstract

References

  • Ada, H. (1993). Durum wheat (Triticum durum Desf.) production under Thrace and Marmara Region ecological conditions. Ankara University, Graduate School of Natural and Applied Sciences. Master Thesis. 140 p.
  • Ajay, B., Bera, S., Singh, A., Kumar, N., Gangadhar, K., & Kona, P. (2020). Evaluation of genotype × environment interaction and yield stability analysis in peanut under phosphorus stress condition using stability parameters of AMMI Model. Agricultural Research, 9, 477–486.
  • Akter, A., Jamil Hassan, M., Umma Kulsum, M., Islam, M.R., Hossain, K. et al. (2014). AMMI biplot analysis for stability of grain yield in hybrid rice (Oryza sativa L.). Journal of Rice Research, 2, 126. doi: 10.4172/jrr.1000126.
  • Ayed, S., Bouhaouel, I., Othmani, A., & Bassi, F.M. (2021). Use of wild relatives in durum wheat (Triticum turgidum L. var. durum Desf.) breeding program: adaptation and stability in context of contrasting environments in Tunisia. Agronomy, 11, 1782.
  • Bhardwaj, V., Sood, S., Kumar, V., Gupta, V.K. (2020). BLUP and stability analysis of multi-environment trials of potato varieties in sub-tropical Indian conditions. Heliyon, 6(11), e05525.
  • Bilgin, O., Korkut, K.Z., Baser, I., Daglıoglu, O., Ozturk, I., & Kahraman, T. (2008). Determination of variability between grain yield and yield components of durum wheat varieties (Triticum durum Desf.) in Thrace Region. Journal of Tekirdag Agricultural Faculty, 5(2), 101-109.
  • Crossa, J., Gauch, H. G., & Zobel, R. W. (1990). Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop Science, 30, 493–500. doi:10.2135/cropsci1990.0011183X003000030003x.
  • De Vita, P., & Taranto, F. (2019). Durum wheat (Triticum turgidum ssp. durum) breeding to meet the challenge of climate change. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Cereals. Springer, Cham. https://doi.org/10.1007/978-3-030-23108-8_13.
  • Dimitrios B., Christos G., Jesus R., & Eva, B. (2008). Separation of cotton cultivar testing sites based on representativeness and discriminating ability using GGE Biplots. Agronomy Journal, 100, 1230-1236. Elakhdar, A., Kumamaru, T., Smith, K., Brueggeman, R., Capo-chichi, L., & Solanki, S. (2017). Genotype by environment interactions (GEIs) for barley grain yield under salt stress condition. Journal of Crop Science and Biotechnology, 20, 193-204. Fan, X.M., Kang, M.S., Chen, H., Zhang, Y., Tan, J., & Xu, C. (2007). Yield stability of maize hybrids evaluated in multi environment trials in Yunnan, China. Agronomy Journal, 99, 220-228.
  • Frankin, S., Roychowdhury, R., Nashef, K., Abbo, S., Bonfil, D.J., & Ben-David, R. (2021). In-field comparative study of landraces vs. modern wheat genotypes under a Mediterranean climate. Plants, 10, 2612.
  • Gauch, H.G., & Zobel, R.W. (1997). Identifying mega-environments and targeting genotypes. Crop Science, 37, 311-326.
  • Gungor, H., Cakir, M.F. & Dumlupinar, Z. (2022). Evaluation of wheat genotypes: genotype × environment interaction and GGE biplot analysis. Turkish Journal of Field Crops, 27(1), 149-157.
  • Ilker, E., Geren, H., Unsal, R., Sevim, I., Tonk, F.A., & Tosun, M. (2011). AMMI-Biplot analysis of yield performances of bread wheat cultivars grown at different locations. Turkish Journal of Field Crops, 16(1), 64-68.
  • Islam, M.S., Halder, T., Hossain, J., Mahmud, F., & Rahman, J. (2015). Genotype-environment interaction in spring wheat (Triticum aestivum) of Bangladesh. Bangladesh Journal of Plant Breeding and Genetics, 28(2), 17–24. https://doi.org/10.3329/bjpbg.v28i2.29957.
  • Jat, M.L, Jat, R.K, Singh, P., Jat, S.L., Sidhu, H.S., Jat, H.S., Bijarniya, D., Parihar, C.M., & Gupta, R. (2017). Predicting yield and stability analysis of wheat under different crop management systems across agro-ecosystems in India. American Journal of Plant Sciences, 8, 1977-2012.
  • Jędzura, S., Bocianowski, J. & Matysik, P. (2023). The AMMI model application to analyze the genotype–environmental interaction of spring wheat grain yield for the breeding program purposes. Cereal Research Communications, 51, 197– 205. https://doi.org/10.1007/s42976-022-00296-9.
  • Kahriman, F. (2020). BAFR: R a package and web application developed for the analysis of plant breeding experiments with the program. Turkish Journal of Agriculture and Natural Sciences, 7, 1-9 (in Turkish).
  • Kang, M.S., Aggarwal, V.D., & Chirwa, R.M. (2006). Adaptability and stability of bean cultivars as determined via yieldstability statistic and GGE biplot analysis. Journal of Crop Improvement, 15, 97-120.
  • Kaya, Y. (2022). GGE-Biplot analysis of durum wheat yield trials. Black Sea Journal of Agriculture, 5(2), 104-109.
  • Kendal, E. (2019). Comparing durum wheat cultivars by genotype × yield × trait and genotype × trait biplot method. Chilean Journal of Agricultural Research, 79(4), 512-522.
  • Khan, M., Mohammad, F., Khan, F., Ahmad, S., & Ullah, I. (2020). Additive main effect and multiplicative interaction analysis for grain yield in bread wheat. The Journal of Animal & Plant Sciences, 30(3), 677-684.
  • Khayatnezhad, M., & Gholamin, R. (2020). Study of durum wheat genotypes’ response to drought stress conditions. Helix, 10, 98-103.
  • Martinez-Moreno, F., Ammer, K., & Solis, I. (2022). Global changes in a historical review. Agronomy cultivated area and breeding activities of durum wheat from 1800 to date: Agronomy, 12, 1135.
  • Mastrangelo, A.M., Mare, C., Mazzucotelli, E., Francia, E., Arru, L., Di Fonzo, N., Pecchioni, N., & Cattivelli, L. (2005). Genetic bases of resistance to abiotic stresses in durum wheat (Triticum turgidum ssp. durum). In: Royo C, Nachit MDi Fonzo N, Araus JL, Pfeiffer WH, Slafer GA (eds) Durum wheat breeding: current approaches and future strategies, (pp. 255–289). Haworth Press, New York.
  • Megerssa, S.H., Ishetu, Y.S., Hail, M., & Lemma, A.Z. (2024). Genotype by environment interaction and stability analyses of durum wheat elite lines evaluated in Ethiopia. Crop Breeding and Applied Biotechnology, 24(1), e45542417.
  • Mekonnen, M., Sharie, G., Bayable, M., Teshager, A., Abebe, E., Ferede, M., Fentie, D., Wale, S., Tay, Y., Ayaleneh, Z., & Malefia, A. (2020). Participatory variety selection and stability analysis of Durum wheat varieties (Triticum durum Desf) in northwest Amhara. Cogent Food & Agriculture, 6, 1746229.
  • Mohammadi, R., Farshadfar, E., & Amri, A. (2015). Science direct interpreting genotype × environment interactions for grain yield of rainfed durum wheat in Iran. The Crop Journal, 3, 526-535.
  • Mohammadi, R., Armion, M., Zadhasan, E., Ahamdi, M.M., & Amir, A. (2017). The use of AMMI model for interpreting genotype × environment interaction in durum wheat. Experimental Agriculture, 54(5), 670-683.
  • Mohamed, M., Darwish, M., Abd El-Rady, A., Ghalab, E., & Elfanah, A. (2022). Estimation of AMMI and GGE Biplots for some Bread and Durum Wheat Genotypes. Journal of Plant Production, 13(3), 75-83. doi: 10.21608/jpp.2022.131275.1103.
  • Ngailo, S., Shimelis, H., Sibiya, J., Mtunda, K., & Mashilo, J. (2019). Genotype-by-environment interaction of newlydeveloped sweet potato genotypes for storage root yield, yield-related traits and resistance to sweet potato virus disease. Heliyon, 5(3), e01448.
  • Ozberk, I., Ozberk, F., Atli, A., Cetin, L., Aydemir, T., Keklikei, Z., Onal, M.A., & Braun, H.J. (2005). Durum wheat in Turkey: Yesterday, today, and tomorrow. In Durum Wheat Breeding: Current Approaches and Future Strategies; Royo, C., Nachit, M., di Fonzo, N., Araus, J.L., Pfeiffer, W., Slafer, G., Eds.; Haworth Press: New York, NY, USA, Vol. 2, pp. 981–1010.
  • Plavsin, I., Gunjaca, J., Simek, R., & Novoselovic, D. (2021). Capturing GEI patterns for quality traits in biparental wheat populations. Agronomy, 11(6), 1022.
  • Pour-Aboughadareh, A., Barati, A., Koohkan, S.A., Jabari, M., Marzoghian, A., Gholipoor, A., Shahbazi-Homonloo, K., Zali, H., Poodineh, O., & Kheirgo, M. (2022). Dissection of genotype-by-environment interaction and yield stability analysis in barley using AMMI model and stability statistics. Bulletin of the National Research Centre, 46, 19. https://doi.org/10.1186/s42269-022-00703-5.
  • Putto, W., Patanothai, A., Jogloy, S., & Hoogenboom, G. (2008). Determination of mega-environments for peanut breeding using the CSM-CROPGRO-Peanut model. Crop Science, 48, 973-982.
  • Sehirali, S., & Genctan, T. (1985). Physical and biological properties and sowing problems of wheat seeds used in Tekirdag province. Trakya University Faculty of Agriculture Publication, no: 25.
  • Tekdal, S., Kendal, E., Aktas, H., Karaman, M., Dogan, H., Bayram, S., Duzgun, M., & Efe, A. (2017). Evaluation of yield and quality characteristics of some durum wheat lines by biplot analysis method. Biotech Studies, 26, 68-73. http://doi.org/10.21566/tarbitderg.359162.
  • Temesgen Bacha, T.B., Sintayehu Alemerew, S.A., & Zerihun Tadesse, Z.T. (2015). Genotype × environment interaction and yield stability of bread wheat (Triticum aestivum L.) genotype in Ethiopia using the AMMI analysis. Journal of Biology, Agriculture and Healthcare, 5(11), 129-139.
  • Ulgen, N., & Yurtsever, N. (1995). Türkiye fertilizer and fertilization guide, general directorate of rural services, soil and fertilizer research institute directorate publications, General Pub., 209, Technical Pub., 66, 4th Edit., Ankara.
  • Verma, A., & Singh, G. (2021). Stability, adaptability analysis of wheat genotypes by AMMI with blup for restricted irrigated multi location trials in peninsular zone of India. Agricultural Sciences, 12, 198-212.
  • White, P.J., & Broadley, M.R. (2009). Biofortification of crops with seven mineral elements often lacking in human dietsiron, zinc, copper, calcium, magnesium, selenium ve iodine. New Phytologist, 182, 49-84.
  • Yan, W., Hunt, L.A., Sheng, Q., & Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science, 40, 597-605.
  • Yan, W. (2001). GGE biplot—A Windows application for graphical analysisof multi-environment trial data and other types of two-way data. Agronomy Journal, 93, 1111–1118.
  • Yan, W., & Rajcan, I. (2002). Biplot evaluation of test sites and trait relationships of soybean plants in Ontario. Crop Science, 42, 11-20.
  • Yan, W., & Kang, M.S. (2002). GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists (1st ed.). CRC Press. https://doi.org/10.1201/9781420040371.
  • Yan, W., & Tinker, N.A. (2005). An integrated biplot system for displaying, interpreting, and exploring genotype 9 environment interaction. Crop Science, 45, 1004-1016.
  • Yan, W., & Tinker, N.A. (2006). Biplot analysis of multi environment trial data: Principles and applications. Canadian Journal of Plant Science, 86, 623-645.
  • Yan, W., Kang, M.S., Ma, B.L., Woods, S., & Cornelius, P.L. (2007). GGE biplot vs. AMMI analysis of genotype-byenvironment data. Crop Science, 47, 643–653.
  • Yan, W., & Holland, J.B. (2010). A heritability-adjusted GGE biplot for test environment evaluation. Euphytica, 171(3), 355-369.
  • Zerihun, T., Dawit, A., Habtemariam, Z., Njau, P., & Mongi, R. (2016). Leveraging from genotype by environment interaction for bread wheat production in Eastern Africa. African Crop Science Journal, 24(1), 1-10.

Grain Yield Stability of Durum Wheat Genotypes: A Graphical Approach

Year 2025, Volume: 30 Issue: 1, 164 - 174, 23.06.2025
https://doi.org/10.17557/tjfc.1671073

Abstract

The study was conducted in the Thrace Region in 2019 and 2020. Fifteen elite lines and 10 varieties of durum wheat were used as material. The aim of this study was to determine the stability of elite lines and varieties by using the graphical AMMI and GGE biplot analyses. Elite lines 3, 4, 5, 7, 8, 9, 10, 12 and 15 and varieties Cabato and NKU Ziraat had values above the general mean. The results for grain yield of elite lines in this study show that the grain yield potential of elite lines selected as breeding material was good, and that the selection was successful. When the stability of the genotypes was evaluated, 3 of the 8 environments had positive effect on grain yield, while 5 of them had negative effect on grain yield. These data reveal the importance of identifying suitable environments for high grain yield in durum wheat. Among the durum wheat genotypes examined, elite lines 7 and 4 had better stability and grain yield for all environments. When the genotypes were examined separately for each environment, elite lines 3, 9 and 10 showed the most superior characteristics for environments 1 and 4, while elite lines 12 and 15 were most suitable for environments 7 and 8.

References

  • Ada, H. (1993). Durum wheat (Triticum durum Desf.) production under Thrace and Marmara Region ecological conditions. Ankara University, Graduate School of Natural and Applied Sciences. Master Thesis. 140 p.
  • Ajay, B., Bera, S., Singh, A., Kumar, N., Gangadhar, K., & Kona, P. (2020). Evaluation of genotype × environment interaction and yield stability analysis in peanut under phosphorus stress condition using stability parameters of AMMI Model. Agricultural Research, 9, 477–486.
  • Akter, A., Jamil Hassan, M., Umma Kulsum, M., Islam, M.R., Hossain, K. et al. (2014). AMMI biplot analysis for stability of grain yield in hybrid rice (Oryza sativa L.). Journal of Rice Research, 2, 126. doi: 10.4172/jrr.1000126.
  • Ayed, S., Bouhaouel, I., Othmani, A., & Bassi, F.M. (2021). Use of wild relatives in durum wheat (Triticum turgidum L. var. durum Desf.) breeding program: adaptation and stability in context of contrasting environments in Tunisia. Agronomy, 11, 1782.
  • Bhardwaj, V., Sood, S., Kumar, V., Gupta, V.K. (2020). BLUP and stability analysis of multi-environment trials of potato varieties in sub-tropical Indian conditions. Heliyon, 6(11), e05525.
  • Bilgin, O., Korkut, K.Z., Baser, I., Daglıoglu, O., Ozturk, I., & Kahraman, T. (2008). Determination of variability between grain yield and yield components of durum wheat varieties (Triticum durum Desf.) in Thrace Region. Journal of Tekirdag Agricultural Faculty, 5(2), 101-109.
  • Crossa, J., Gauch, H. G., & Zobel, R. W. (1990). Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop Science, 30, 493–500. doi:10.2135/cropsci1990.0011183X003000030003x.
  • De Vita, P., & Taranto, F. (2019). Durum wheat (Triticum turgidum ssp. durum) breeding to meet the challenge of climate change. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Cereals. Springer, Cham. https://doi.org/10.1007/978-3-030-23108-8_13.
  • Dimitrios B., Christos G., Jesus R., & Eva, B. (2008). Separation of cotton cultivar testing sites based on representativeness and discriminating ability using GGE Biplots. Agronomy Journal, 100, 1230-1236. Elakhdar, A., Kumamaru, T., Smith, K., Brueggeman, R., Capo-chichi, L., & Solanki, S. (2017). Genotype by environment interactions (GEIs) for barley grain yield under salt stress condition. Journal of Crop Science and Biotechnology, 20, 193-204. Fan, X.M., Kang, M.S., Chen, H., Zhang, Y., Tan, J., & Xu, C. (2007). Yield stability of maize hybrids evaluated in multi environment trials in Yunnan, China. Agronomy Journal, 99, 220-228.
  • Frankin, S., Roychowdhury, R., Nashef, K., Abbo, S., Bonfil, D.J., & Ben-David, R. (2021). In-field comparative study of landraces vs. modern wheat genotypes under a Mediterranean climate. Plants, 10, 2612.
  • Gauch, H.G., & Zobel, R.W. (1997). Identifying mega-environments and targeting genotypes. Crop Science, 37, 311-326.
  • Gungor, H., Cakir, M.F. & Dumlupinar, Z. (2022). Evaluation of wheat genotypes: genotype × environment interaction and GGE biplot analysis. Turkish Journal of Field Crops, 27(1), 149-157.
  • Ilker, E., Geren, H., Unsal, R., Sevim, I., Tonk, F.A., & Tosun, M. (2011). AMMI-Biplot analysis of yield performances of bread wheat cultivars grown at different locations. Turkish Journal of Field Crops, 16(1), 64-68.
  • Islam, M.S., Halder, T., Hossain, J., Mahmud, F., & Rahman, J. (2015). Genotype-environment interaction in spring wheat (Triticum aestivum) of Bangladesh. Bangladesh Journal of Plant Breeding and Genetics, 28(2), 17–24. https://doi.org/10.3329/bjpbg.v28i2.29957.
  • Jat, M.L, Jat, R.K, Singh, P., Jat, S.L., Sidhu, H.S., Jat, H.S., Bijarniya, D., Parihar, C.M., & Gupta, R. (2017). Predicting yield and stability analysis of wheat under different crop management systems across agro-ecosystems in India. American Journal of Plant Sciences, 8, 1977-2012.
  • Jędzura, S., Bocianowski, J. & Matysik, P. (2023). The AMMI model application to analyze the genotype–environmental interaction of spring wheat grain yield for the breeding program purposes. Cereal Research Communications, 51, 197– 205. https://doi.org/10.1007/s42976-022-00296-9.
  • Kahriman, F. (2020). BAFR: R a package and web application developed for the analysis of plant breeding experiments with the program. Turkish Journal of Agriculture and Natural Sciences, 7, 1-9 (in Turkish).
  • Kang, M.S., Aggarwal, V.D., & Chirwa, R.M. (2006). Adaptability and stability of bean cultivars as determined via yieldstability statistic and GGE biplot analysis. Journal of Crop Improvement, 15, 97-120.
  • Kaya, Y. (2022). GGE-Biplot analysis of durum wheat yield trials. Black Sea Journal of Agriculture, 5(2), 104-109.
  • Kendal, E. (2019). Comparing durum wheat cultivars by genotype × yield × trait and genotype × trait biplot method. Chilean Journal of Agricultural Research, 79(4), 512-522.
  • Khan, M., Mohammad, F., Khan, F., Ahmad, S., & Ullah, I. (2020). Additive main effect and multiplicative interaction analysis for grain yield in bread wheat. The Journal of Animal & Plant Sciences, 30(3), 677-684.
  • Khayatnezhad, M., & Gholamin, R. (2020). Study of durum wheat genotypes’ response to drought stress conditions. Helix, 10, 98-103.
  • Martinez-Moreno, F., Ammer, K., & Solis, I. (2022). Global changes in a historical review. Agronomy cultivated area and breeding activities of durum wheat from 1800 to date: Agronomy, 12, 1135.
  • Mastrangelo, A.M., Mare, C., Mazzucotelli, E., Francia, E., Arru, L., Di Fonzo, N., Pecchioni, N., & Cattivelli, L. (2005). Genetic bases of resistance to abiotic stresses in durum wheat (Triticum turgidum ssp. durum). In: Royo C, Nachit MDi Fonzo N, Araus JL, Pfeiffer WH, Slafer GA (eds) Durum wheat breeding: current approaches and future strategies, (pp. 255–289). Haworth Press, New York.
  • Megerssa, S.H., Ishetu, Y.S., Hail, M., & Lemma, A.Z. (2024). Genotype by environment interaction and stability analyses of durum wheat elite lines evaluated in Ethiopia. Crop Breeding and Applied Biotechnology, 24(1), e45542417.
  • Mekonnen, M., Sharie, G., Bayable, M., Teshager, A., Abebe, E., Ferede, M., Fentie, D., Wale, S., Tay, Y., Ayaleneh, Z., & Malefia, A. (2020). Participatory variety selection and stability analysis of Durum wheat varieties (Triticum durum Desf) in northwest Amhara. Cogent Food & Agriculture, 6, 1746229.
  • Mohammadi, R., Farshadfar, E., & Amri, A. (2015). Science direct interpreting genotype × environment interactions for grain yield of rainfed durum wheat in Iran. The Crop Journal, 3, 526-535.
  • Mohammadi, R., Armion, M., Zadhasan, E., Ahamdi, M.M., & Amir, A. (2017). The use of AMMI model for interpreting genotype × environment interaction in durum wheat. Experimental Agriculture, 54(5), 670-683.
  • Mohamed, M., Darwish, M., Abd El-Rady, A., Ghalab, E., & Elfanah, A. (2022). Estimation of AMMI and GGE Biplots for some Bread and Durum Wheat Genotypes. Journal of Plant Production, 13(3), 75-83. doi: 10.21608/jpp.2022.131275.1103.
  • Ngailo, S., Shimelis, H., Sibiya, J., Mtunda, K., & Mashilo, J. (2019). Genotype-by-environment interaction of newlydeveloped sweet potato genotypes for storage root yield, yield-related traits and resistance to sweet potato virus disease. Heliyon, 5(3), e01448.
  • Ozberk, I., Ozberk, F., Atli, A., Cetin, L., Aydemir, T., Keklikei, Z., Onal, M.A., & Braun, H.J. (2005). Durum wheat in Turkey: Yesterday, today, and tomorrow. In Durum Wheat Breeding: Current Approaches and Future Strategies; Royo, C., Nachit, M., di Fonzo, N., Araus, J.L., Pfeiffer, W., Slafer, G., Eds.; Haworth Press: New York, NY, USA, Vol. 2, pp. 981–1010.
  • Plavsin, I., Gunjaca, J., Simek, R., & Novoselovic, D. (2021). Capturing GEI patterns for quality traits in biparental wheat populations. Agronomy, 11(6), 1022.
  • Pour-Aboughadareh, A., Barati, A., Koohkan, S.A., Jabari, M., Marzoghian, A., Gholipoor, A., Shahbazi-Homonloo, K., Zali, H., Poodineh, O., & Kheirgo, M. (2022). Dissection of genotype-by-environment interaction and yield stability analysis in barley using AMMI model and stability statistics. Bulletin of the National Research Centre, 46, 19. https://doi.org/10.1186/s42269-022-00703-5.
  • Putto, W., Patanothai, A., Jogloy, S., & Hoogenboom, G. (2008). Determination of mega-environments for peanut breeding using the CSM-CROPGRO-Peanut model. Crop Science, 48, 973-982.
  • Sehirali, S., & Genctan, T. (1985). Physical and biological properties and sowing problems of wheat seeds used in Tekirdag province. Trakya University Faculty of Agriculture Publication, no: 25.
  • Tekdal, S., Kendal, E., Aktas, H., Karaman, M., Dogan, H., Bayram, S., Duzgun, M., & Efe, A. (2017). Evaluation of yield and quality characteristics of some durum wheat lines by biplot analysis method. Biotech Studies, 26, 68-73. http://doi.org/10.21566/tarbitderg.359162.
  • Temesgen Bacha, T.B., Sintayehu Alemerew, S.A., & Zerihun Tadesse, Z.T. (2015). Genotype × environment interaction and yield stability of bread wheat (Triticum aestivum L.) genotype in Ethiopia using the AMMI analysis. Journal of Biology, Agriculture and Healthcare, 5(11), 129-139.
  • Ulgen, N., & Yurtsever, N. (1995). Türkiye fertilizer and fertilization guide, general directorate of rural services, soil and fertilizer research institute directorate publications, General Pub., 209, Technical Pub., 66, 4th Edit., Ankara.
  • Verma, A., & Singh, G. (2021). Stability, adaptability analysis of wheat genotypes by AMMI with blup for restricted irrigated multi location trials in peninsular zone of India. Agricultural Sciences, 12, 198-212.
  • White, P.J., & Broadley, M.R. (2009). Biofortification of crops with seven mineral elements often lacking in human dietsiron, zinc, copper, calcium, magnesium, selenium ve iodine. New Phytologist, 182, 49-84.
  • Yan, W., Hunt, L.A., Sheng, Q., & Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science, 40, 597-605.
  • Yan, W. (2001). GGE biplot—A Windows application for graphical analysisof multi-environment trial data and other types of two-way data. Agronomy Journal, 93, 1111–1118.
  • Yan, W., & Rajcan, I. (2002). Biplot evaluation of test sites and trait relationships of soybean plants in Ontario. Crop Science, 42, 11-20.
  • Yan, W., & Kang, M.S. (2002). GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists (1st ed.). CRC Press. https://doi.org/10.1201/9781420040371.
  • Yan, W., & Tinker, N.A. (2005). An integrated biplot system for displaying, interpreting, and exploring genotype 9 environment interaction. Crop Science, 45, 1004-1016.
  • Yan, W., & Tinker, N.A. (2006). Biplot analysis of multi environment trial data: Principles and applications. Canadian Journal of Plant Science, 86, 623-645.
  • Yan, W., Kang, M.S., Ma, B.L., Woods, S., & Cornelius, P.L. (2007). GGE biplot vs. AMMI analysis of genotype-byenvironment data. Crop Science, 47, 643–653.
  • Yan, W., & Holland, J.B. (2010). A heritability-adjusted GGE biplot for test environment evaluation. Euphytica, 171(3), 355-369.
  • Zerihun, T., Dawit, A., Habtemariam, Z., Njau, P., & Mongi, R. (2016). Leveraging from genotype by environment interaction for bread wheat production in Eastern Africa. African Crop Science Journal, 24(1), 1-10.
There are 49 citations in total.

Details

Primary Language English
Subjects Cereals and Legumes
Journal Section Research Article
Authors

Damla Balaban Göçmen 0000-0002-3980-3906

Submission Date April 7, 2025
Acceptance Date May 22, 2025
Publication Date June 23, 2025
Published in Issue Year 2025 Volume: 30 Issue: 1

Cite

APA Balaban Göçmen, D. (2025). Grain Yield Stability of Durum Wheat Genotypes: A Graphical Approach. Turkish Journal Of Field Crops, 30(1), 164-174. https://doi.org/10.17557/tjfc.1671073

Turkish Journal of Field Crops is published by the Society of Field Crops Science and issued twice a year.
Owner : Prof. Dr. Behçet KIR
Ege University, Faculty of Agriculture, Department of Field Crops
Editor in Chief : Prof. Dr. Emre ILKER
Address : 848 sok. 2. Beyler İşhanı No:72, Kat:3 D.313 35000 Konak-Izmir, TURKEY
Email :  turkishjournaloffieldcrops@gmail.com contact@field-crops.org