Research Article
BibTex RIS Cite

ASSESSMENT OF NUCLEAR DNA CONTENTS VARIATION AND THEIR RELATIONSHIP WITH FLOWERING IN CORN GENOTYPES

Year 2019, Volume: 24 Issue: 1, 39 - 45, 14.06.2019
https://doi.org/10.17557/tjfc.562640

Abstract

Genome size variations are very helpful to provide an understanding of the diversification, evolution and ploidy screening of germplasm and investigate the aneuploidy, cell cycle kinetics, and reproductive pathways for the plants. It is observed that variation in the DNA content has a direct effect on the phenotype of a plant. Flowering time is considered one of the critical adaptation parameters for maize (Zea mays L.), and this study aimed to investigate the DNA content and its relationship with the flowering time in this crop. A total of 19 inbred lines and three hybrids adapted to temperate and tropical regions with early, late and very late flowering were used as plant material. Their DNA content was determined using flow cytometry, and Vicia sativa as standard for the comparison of DNA content. The DNA content of the studied material of corn ranged from 5.508 pg to 6.285 pg, with an average value of 5.817 pg. The Highest DNA content was determined in the Tzi8 inbred line belonging to a group of very late flowering. A highly significant and positive correlation was found between DNA content and flowering time, which was confirmed with a regression analysis. The results of the study revealed that increasing the DNA content resulted in delayed flowering, and inbred lines adapted to tropical regions had a higher DNA content.

References

  • Akbudak, M.A., M. Sakiroglu and M. Tuna. 2018. Estimation of Nuclear DNA Content and Determination of Relationship Between Altitude and Genome Size of USDA Turkish Oat (Avena spp.) Collection. Gesunde Pflanzen.:1-8.
  • Alter, P., S. Bircheneder, L.Z. Zhou, U. Schlüter, M. Gahrtz, U. Sonnewald and T. Dresselhaus. 2016. Flowering Time Regulated Genes in Maize Include the transcription factor ZmMADS1. Plant physiology. pp-00285.
  • Bai, C., W.S. Alverson, A. Follansbee and D.M. Waller. 2012. New reports of nuclear DNA content for 407 vascular plant taxa from the United States. Annals of Botany. 110(8):1623-1629.
  • Beaulieu, J.M., A.T. Moles, I.J. Leitch, M.D. Bennett, J.B. Dickie and C.A. Knight. 2007. Correlated evolution of genome size and seed mass. New Phytologist. 173(2):422-37.
  • Bennett, M.D. and I.J. Leitch. 2011. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annals of Botany. 107(3):467-590.
  • Bennett, M.D. and I.J. Leitch. 1997. Nuclear DNA amounts in angiosperms—583 new estimates. Annals of Botany. 80(2):169-96.
  • Bennett, M.D. and IJ. Leitch. 2005. Nuclear DNA amounts in angiosperms: progress, problems and prospects. Annals of Botany. 95(1):45-90.
  • Bennett, M.D., P. Bhandol and I.J. Leitch. 2000.Nuclear DNA amounts in angiosperms and their modern uses—807 new estimates. Annals of botany. 86(4):859-909.
  • Bennetzen, J.L. and E.A. Kellogg. 1997. Do plants have a one-way ticket to genomic obesity?. The Plant Cell. (9):1509.
  • Bilinski, P., P.S. Albert, J.J. Berg, J.A. Birchler, M.N. Grote, A. Lorant, ,J..Quezada, K. Swarts, J. Yang, J. Ross-Ibarra. 2018. Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays. PLoS genetics. 14(5):e1007162.
  • Chung, J., J.H. Lee, K. Arumuganathan, G.L. Graef, J.E. Specht. 1998. Relationships between nuclear DNA content and seed and leaf size in soybean. Theoretical and Applied Genetics. 96(8):1064-8.
  • Colasanti, J. and V. Coneva. 2009. Mechanisms of floral induction in grasses: something borrowed, something new. Plant Physiology. .149(1):56-62.
  • Devos, K.M., J.K. Brown, J.L. Bennetzen. 2002. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome research. .12(7):1075-9.
  • Díez, C.M., B.S. Gaut, E. Meca, E. Scheinvar, S. Montes‐Hernandez, L.E. Eguiarte, M.I. Tenaillon. 2013. Genome size variation in wild and cultivated maize along altitudinal gradients. New Phytologist. 199(1):264-76.
  • Díez, M.C., C. Vitte, J. Ross-Ibarra, B.S. Gaut, M.I. Tenaillon. 2012. Using nextgen sequencing to investigate genome size variation and transposable element content. InPlant transposable elements (pp. 41-58). Springer, Berlin, Heidelberg.
  • Fourastié, M.F., A.M. Gottlieb, L. Poggio, G.E. González. 2018. Are cytological parameters of maize landraces (Zea mays ssp. mays) adapted along an altitudinal cline?. Journal of plant research. 131(2):285-96.
  • Graham, M.J., C.D. Nickell, A.L. Rayburn. 1994. Relationship between genome size and maturity group in soybean. Theoretical and Applied Genetics. 88(3-4):429-32.
  • Greilhuber, J. and I.J. Leitch 2013.Genome size and the phenotype. InPlant Genome Diversity.2:. 323-344. Springer, Vienna.
  • Greilhuber, J., J. Doležel, M.A. Lysák, M.D. Bennett. 2005. The origin, evolution and proposed stabilization of the terms ‘genome size’and ‘C-value’to describe nuclear DNA contents. Annals of botany. 95(1):255-60.
  • Janoušek, V., L. Wang, K. Luzynski, P. Dufková, M.M. Vyskočilová, M.W. Nachman, P. Munclinger, M. Macholán, J. Piálek, P.K. Tucker. 2012. Genome‐wide architecture of reproductive isolation in a naturally occurring hybrid zone between Mus musculus musculus and M. m. domesticus. Molecular Ecology. 21(12):3032-47.
  • Jian, Y., C. Xu, Z. Guo, S. Wang, Y. Xu, C. Zou. 2017. Maize (Zea mays L.) genome size indicated by 180-bp knob abundance is associated with flowering time. Scientific Reports. 7(1):5954.
  • Kidwell, M.G., D.R. Lisch. 2002.Transposable elements as sources of genomic variation. InMobile DNA II (pp. 59-90). American Society of Microbiology. Knight, C.A., N.A. Molinari, D.A. Petrov. 2005. The large genome constraint hypothesis: evolution, ecology and phenotype. Annals of Botany. 95(1):177-90.
  • Lee, J.H., K. Arumuganathan, S.M. Kaeppler, S.W. Park, K.Y. Kim, Y.S. Chung, D.H. Kim, K. Fukui. 2002. Variability of chromosomal DNA contents in maize (Zea mays L.) inbred and hybrid lines. Planta. 215(4):666-71.
  • Leitch, A.R. and I.J. Leitch 2012. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytologist. 194(3):629-46.
  • Leitch, I.J. and M.D. Bennett. 2007. Genome size and its uses: the impact of flow cytometry. Flow cytometry with plant cells: analysis of genes, chromosomes and genomes, ed. Dolezel, J., Greilhuber J., and Suda. J., pp. 153–176, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
  • Li, Z., M. Zhu, J. Du, H. Ma, G. Jin, J. Dai. 2018. Genetic variants in nuclear DNA along with environmental factors modify mitochondrial DNA copy number: a population-based exome-wide association study. BMC genomics. 19(1):752.
  • Ma, J., K.M. Devos, J.L. Bennetzen. 2004. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Research. 14(5):860-869.
  • Meagher, T.R. and C. Vassiliadis. 2005. Phenotypic impacts of repetitive DNA in flowering plants. New Phytologist.168(1): 71-80.
  • Minelli, S., P. Moscariello, M. Ceccarelli, P.G. Cionini. 1996. Nucleotype and phenotype in Vicia faba. Heredity. 76(5): 524.
  • Möller, M. 2018. Nuclear DNA C-values are correlated with pollen size at tetraploid but not diploid level and linked to phylogenetic descent in Streptocarpus (Gesneriaceae). South African Journal of Botany. 114: 323-44.
  • Mudasir, S., P.A. Sofi, M.N. Khan, N.R. Sofi, Z.A. Dar. 2012. Research article genetic diversity, variability and character association in local common Bean (Phaseolus vulgaris L.) germplasm of Kashmir. Electron J Plant Breed. (3): 883-91.
  • Nadeem, M.A., M.A. Nawaz, M.Q. Shahid, Y. Dogan, G. Comertpay, M. Yıldız, R. Hatipoglu, F. Ahmad, A. Alsaleh, N. Labhane, H. Ozkan, G. Chung and F.S. Baloch. 2017. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnol. Equip. 32: 261–285.
  • Petrov, D.A. 2001. Evolution of genome size: new approaches to an old problem. TRENDS in Genetics. 17(1): 23-8.
  • Piegu, B., R. Guyot, N. Picault, A. Roulin, A. Saniyal, H. Kim, K. Collura, D.S. Brar, S. Jackson, R.A. Wing, O. Panaud. 2006. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome research 16(10): 1262-9.
  • Poggio, L., M. Rosato, A.M. Chiavarino, C.A. Naranjo. 1998. Genome size and environmental correlations in maize (Zea mays ssp. mays, Poaceae). Annal of Botany. 82(suppl_1): 107-15.
  • Rana, J.C., T.R. Sharma, R.K. Tyagi, R.K. Chahota, N.K. Gautam, M. Singh, P.N. Sharma, S.N. Ojha. 2015. Characterization of 4274 accessions of common bean (Phaseolus vulgaris L.) germplasm conserved in the Indian gene bank for phenological, morphological and agricultural traits. Euphytica 205(2): 441-57.
  • Rayburn, A.L., D.P. Biradar, D.G. Bullock, L.M. McMurphy. 1993. Nuclear DNA content in F 1 hybrids of maize. Heredity. 70(3): 294.
  • Rayburn, A.L., J.W. Dudley, D.P. Biradar. 1994. Selection for early flowering results in simultaneous selection for reduced nuclear DNA content in maize. Plant Breeding. 112(4): 318-22.
  • Realini, M.F., L. Poggio, J. Cámara-Hernández, G.E. González. 2016. Intra-specific variation in genome size in maize: cytological and phenotypic correlates. AoB Plants. 8.
  • SanMiguel, P., A. Tikhonov, Y.K. Jin, N. Motchoulskaia, D. Zakharov, A. Melake-Berhan, P.S. Springer, K.J. Edwards M. Lee, Z. Avramova, J.L. Bennetzen. 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science. 274(5288): 765-8.
  • Schnable, P.S., D. Ware, R.S. Fulton, J.C. Stein, F. Wei, S. Pasternak, C. Liang, J. Zhang, L. Fulton, T.A. Graves, P. Minx. 2009. The B73 maize genome: complexity, diversity, and dynamics. science. 326(5956): 1112-5.
  • Schneider, A., G. Hommel, M. Blettner. 2010. Linear regression analysis: part 14 of a series on evaluation of scientific publications. Deutsches Ärzteblatt International. 107(44): 776.
  • Tenaillon, M.I., D. Manicacci, S.D. Nicolas, F. Tardieu, C. Welcker. 2016. Testing the link between genome size and growth rate in maize. PeerJ. 4:e2408.
  • Wendel, J.F., R.C. Cronn, I. Alvarez, B. Liu, R.L. Small, D.S. Senchina. 2002. Intron size and genome size in plants. Molecular biology and evolution. (12): 2346-52.
  • Wessler, S.R. 2006. Transposable elements and the evolution of eukaryotic genomes. Proceedings of the National Academy of Sciences 103(47): 17600-1.
  • Zonneveld, B.J., I.J. Leitch, M.D. Bennett. 2005. First nuclear DNA amounts in more than 300 angiosperms. Annals of botany. 96(2): 229-44.
Year 2019, Volume: 24 Issue: 1, 39 - 45, 14.06.2019
https://doi.org/10.17557/tjfc.562640

Abstract

References

  • Akbudak, M.A., M. Sakiroglu and M. Tuna. 2018. Estimation of Nuclear DNA Content and Determination of Relationship Between Altitude and Genome Size of USDA Turkish Oat (Avena spp.) Collection. Gesunde Pflanzen.:1-8.
  • Alter, P., S. Bircheneder, L.Z. Zhou, U. Schlüter, M. Gahrtz, U. Sonnewald and T. Dresselhaus. 2016. Flowering Time Regulated Genes in Maize Include the transcription factor ZmMADS1. Plant physiology. pp-00285.
  • Bai, C., W.S. Alverson, A. Follansbee and D.M. Waller. 2012. New reports of nuclear DNA content for 407 vascular plant taxa from the United States. Annals of Botany. 110(8):1623-1629.
  • Beaulieu, J.M., A.T. Moles, I.J. Leitch, M.D. Bennett, J.B. Dickie and C.A. Knight. 2007. Correlated evolution of genome size and seed mass. New Phytologist. 173(2):422-37.
  • Bennett, M.D. and I.J. Leitch. 2011. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annals of Botany. 107(3):467-590.
  • Bennett, M.D. and I.J. Leitch. 1997. Nuclear DNA amounts in angiosperms—583 new estimates. Annals of Botany. 80(2):169-96.
  • Bennett, M.D. and IJ. Leitch. 2005. Nuclear DNA amounts in angiosperms: progress, problems and prospects. Annals of Botany. 95(1):45-90.
  • Bennett, M.D., P. Bhandol and I.J. Leitch. 2000.Nuclear DNA amounts in angiosperms and their modern uses—807 new estimates. Annals of botany. 86(4):859-909.
  • Bennetzen, J.L. and E.A. Kellogg. 1997. Do plants have a one-way ticket to genomic obesity?. The Plant Cell. (9):1509.
  • Bilinski, P., P.S. Albert, J.J. Berg, J.A. Birchler, M.N. Grote, A. Lorant, ,J..Quezada, K. Swarts, J. Yang, J. Ross-Ibarra. 2018. Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays. PLoS genetics. 14(5):e1007162.
  • Chung, J., J.H. Lee, K. Arumuganathan, G.L. Graef, J.E. Specht. 1998. Relationships between nuclear DNA content and seed and leaf size in soybean. Theoretical and Applied Genetics. 96(8):1064-8.
  • Colasanti, J. and V. Coneva. 2009. Mechanisms of floral induction in grasses: something borrowed, something new. Plant Physiology. .149(1):56-62.
  • Devos, K.M., J.K. Brown, J.L. Bennetzen. 2002. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome research. .12(7):1075-9.
  • Díez, C.M., B.S. Gaut, E. Meca, E. Scheinvar, S. Montes‐Hernandez, L.E. Eguiarte, M.I. Tenaillon. 2013. Genome size variation in wild and cultivated maize along altitudinal gradients. New Phytologist. 199(1):264-76.
  • Díez, M.C., C. Vitte, J. Ross-Ibarra, B.S. Gaut, M.I. Tenaillon. 2012. Using nextgen sequencing to investigate genome size variation and transposable element content. InPlant transposable elements (pp. 41-58). Springer, Berlin, Heidelberg.
  • Fourastié, M.F., A.M. Gottlieb, L. Poggio, G.E. González. 2018. Are cytological parameters of maize landraces (Zea mays ssp. mays) adapted along an altitudinal cline?. Journal of plant research. 131(2):285-96.
  • Graham, M.J., C.D. Nickell, A.L. Rayburn. 1994. Relationship between genome size and maturity group in soybean. Theoretical and Applied Genetics. 88(3-4):429-32.
  • Greilhuber, J. and I.J. Leitch 2013.Genome size and the phenotype. InPlant Genome Diversity.2:. 323-344. Springer, Vienna.
  • Greilhuber, J., J. Doležel, M.A. Lysák, M.D. Bennett. 2005. The origin, evolution and proposed stabilization of the terms ‘genome size’and ‘C-value’to describe nuclear DNA contents. Annals of botany. 95(1):255-60.
  • Janoušek, V., L. Wang, K. Luzynski, P. Dufková, M.M. Vyskočilová, M.W. Nachman, P. Munclinger, M. Macholán, J. Piálek, P.K. Tucker. 2012. Genome‐wide architecture of reproductive isolation in a naturally occurring hybrid zone between Mus musculus musculus and M. m. domesticus. Molecular Ecology. 21(12):3032-47.
  • Jian, Y., C. Xu, Z. Guo, S. Wang, Y. Xu, C. Zou. 2017. Maize (Zea mays L.) genome size indicated by 180-bp knob abundance is associated with flowering time. Scientific Reports. 7(1):5954.
  • Kidwell, M.G., D.R. Lisch. 2002.Transposable elements as sources of genomic variation. InMobile DNA II (pp. 59-90). American Society of Microbiology. Knight, C.A., N.A. Molinari, D.A. Petrov. 2005. The large genome constraint hypothesis: evolution, ecology and phenotype. Annals of Botany. 95(1):177-90.
  • Lee, J.H., K. Arumuganathan, S.M. Kaeppler, S.W. Park, K.Y. Kim, Y.S. Chung, D.H. Kim, K. Fukui. 2002. Variability of chromosomal DNA contents in maize (Zea mays L.) inbred and hybrid lines. Planta. 215(4):666-71.
  • Leitch, A.R. and I.J. Leitch 2012. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytologist. 194(3):629-46.
  • Leitch, I.J. and M.D. Bennett. 2007. Genome size and its uses: the impact of flow cytometry. Flow cytometry with plant cells: analysis of genes, chromosomes and genomes, ed. Dolezel, J., Greilhuber J., and Suda. J., pp. 153–176, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
  • Li, Z., M. Zhu, J. Du, H. Ma, G. Jin, J. Dai. 2018. Genetic variants in nuclear DNA along with environmental factors modify mitochondrial DNA copy number: a population-based exome-wide association study. BMC genomics. 19(1):752.
  • Ma, J., K.M. Devos, J.L. Bennetzen. 2004. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Research. 14(5):860-869.
  • Meagher, T.R. and C. Vassiliadis. 2005. Phenotypic impacts of repetitive DNA in flowering plants. New Phytologist.168(1): 71-80.
  • Minelli, S., P. Moscariello, M. Ceccarelli, P.G. Cionini. 1996. Nucleotype and phenotype in Vicia faba. Heredity. 76(5): 524.
  • Möller, M. 2018. Nuclear DNA C-values are correlated with pollen size at tetraploid but not diploid level and linked to phylogenetic descent in Streptocarpus (Gesneriaceae). South African Journal of Botany. 114: 323-44.
  • Mudasir, S., P.A. Sofi, M.N. Khan, N.R. Sofi, Z.A. Dar. 2012. Research article genetic diversity, variability and character association in local common Bean (Phaseolus vulgaris L.) germplasm of Kashmir. Electron J Plant Breed. (3): 883-91.
  • Nadeem, M.A., M.A. Nawaz, M.Q. Shahid, Y. Dogan, G. Comertpay, M. Yıldız, R. Hatipoglu, F. Ahmad, A. Alsaleh, N. Labhane, H. Ozkan, G. Chung and F.S. Baloch. 2017. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnol. Equip. 32: 261–285.
  • Petrov, D.A. 2001. Evolution of genome size: new approaches to an old problem. TRENDS in Genetics. 17(1): 23-8.
  • Piegu, B., R. Guyot, N. Picault, A. Roulin, A. Saniyal, H. Kim, K. Collura, D.S. Brar, S. Jackson, R.A. Wing, O. Panaud. 2006. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome research 16(10): 1262-9.
  • Poggio, L., M. Rosato, A.M. Chiavarino, C.A. Naranjo. 1998. Genome size and environmental correlations in maize (Zea mays ssp. mays, Poaceae). Annal of Botany. 82(suppl_1): 107-15.
  • Rana, J.C., T.R. Sharma, R.K. Tyagi, R.K. Chahota, N.K. Gautam, M. Singh, P.N. Sharma, S.N. Ojha. 2015. Characterization of 4274 accessions of common bean (Phaseolus vulgaris L.) germplasm conserved in the Indian gene bank for phenological, morphological and agricultural traits. Euphytica 205(2): 441-57.
  • Rayburn, A.L., D.P. Biradar, D.G. Bullock, L.M. McMurphy. 1993. Nuclear DNA content in F 1 hybrids of maize. Heredity. 70(3): 294.
  • Rayburn, A.L., J.W. Dudley, D.P. Biradar. 1994. Selection for early flowering results in simultaneous selection for reduced nuclear DNA content in maize. Plant Breeding. 112(4): 318-22.
  • Realini, M.F., L. Poggio, J. Cámara-Hernández, G.E. González. 2016. Intra-specific variation in genome size in maize: cytological and phenotypic correlates. AoB Plants. 8.
  • SanMiguel, P., A. Tikhonov, Y.K. Jin, N. Motchoulskaia, D. Zakharov, A. Melake-Berhan, P.S. Springer, K.J. Edwards M. Lee, Z. Avramova, J.L. Bennetzen. 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science. 274(5288): 765-8.
  • Schnable, P.S., D. Ware, R.S. Fulton, J.C. Stein, F. Wei, S. Pasternak, C. Liang, J. Zhang, L. Fulton, T.A. Graves, P. Minx. 2009. The B73 maize genome: complexity, diversity, and dynamics. science. 326(5956): 1112-5.
  • Schneider, A., G. Hommel, M. Blettner. 2010. Linear regression analysis: part 14 of a series on evaluation of scientific publications. Deutsches Ärzteblatt International. 107(44): 776.
  • Tenaillon, M.I., D. Manicacci, S.D. Nicolas, F. Tardieu, C. Welcker. 2016. Testing the link between genome size and growth rate in maize. PeerJ. 4:e2408.
  • Wendel, J.F., R.C. Cronn, I. Alvarez, B. Liu, R.L. Small, D.S. Senchina. 2002. Intron size and genome size in plants. Molecular biology and evolution. (12): 2346-52.
  • Wessler, S.R. 2006. Transposable elements and the evolution of eukaryotic genomes. Proceedings of the National Academy of Sciences 103(47): 17600-1.
  • Zonneveld, B.J., I.J. Leitch, M.D. Bennett. 2005. First nuclear DNA amounts in more than 300 angiosperms. Annals of botany. 96(2): 229-44.
There are 46 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Gonul Comertpay

Publication Date June 14, 2019
Published in Issue Year 2019 Volume: 24 Issue: 1

Cite

APA Comertpay, G. (2019). ASSESSMENT OF NUCLEAR DNA CONTENTS VARIATION AND THEIR RELATIONSHIP WITH FLOWERING IN CORN GENOTYPES. Turkish Journal Of Field Crops, 24(1), 39-45. https://doi.org/10.17557/tjfc.562640
AMA Comertpay G. ASSESSMENT OF NUCLEAR DNA CONTENTS VARIATION AND THEIR RELATIONSHIP WITH FLOWERING IN CORN GENOTYPES. TJFC. June 2019;24(1):39-45. doi:10.17557/tjfc.562640
Chicago Comertpay, Gonul. “ASSESSMENT OF NUCLEAR DNA CONTENTS VARIATION AND THEIR RELATIONSHIP WITH FLOWERING IN CORN GENOTYPES”. Turkish Journal Of Field Crops 24, no. 1 (June 2019): 39-45. https://doi.org/10.17557/tjfc.562640.
EndNote Comertpay G (June 1, 2019) ASSESSMENT OF NUCLEAR DNA CONTENTS VARIATION AND THEIR RELATIONSHIP WITH FLOWERING IN CORN GENOTYPES. Turkish Journal Of Field Crops 24 1 39–45.
IEEE G. Comertpay, “ASSESSMENT OF NUCLEAR DNA CONTENTS VARIATION AND THEIR RELATIONSHIP WITH FLOWERING IN CORN GENOTYPES”, TJFC, vol. 24, no. 1, pp. 39–45, 2019, doi: 10.17557/tjfc.562640.
ISNAD Comertpay, Gonul. “ASSESSMENT OF NUCLEAR DNA CONTENTS VARIATION AND THEIR RELATIONSHIP WITH FLOWERING IN CORN GENOTYPES”. Turkish Journal Of Field Crops 24/1 (June 2019), 39-45. https://doi.org/10.17557/tjfc.562640.
JAMA Comertpay G. ASSESSMENT OF NUCLEAR DNA CONTENTS VARIATION AND THEIR RELATIONSHIP WITH FLOWERING IN CORN GENOTYPES. TJFC. 2019;24:39–45.
MLA Comertpay, Gonul. “ASSESSMENT OF NUCLEAR DNA CONTENTS VARIATION AND THEIR RELATIONSHIP WITH FLOWERING IN CORN GENOTYPES”. Turkish Journal Of Field Crops, vol. 24, no. 1, 2019, pp. 39-45, doi:10.17557/tjfc.562640.
Vancouver Comertpay G. ASSESSMENT OF NUCLEAR DNA CONTENTS VARIATION AND THEIR RELATIONSHIP WITH FLOWERING IN CORN GENOTYPES. TJFC. 2019;24(1):39-45.

Turkish Journal of Field Crops is published by the Society of Field Crops Science and issued twice a year.
Owner : Prof. Dr. Behçet KIR
Ege University, Faculty of Agriculture,Department of Field Crops
Editor in Chief : Prof. Dr. Emre ILKER
Address : 848 sok. 2. Beyler İşhanı No:72, Kat:3 D.313 35000 Konak-Izmir, TURKEY
Email :  turkishjournaloffieldcrops@gmail.com contact@field-crops.org
Tel : +90 232 3112679
Tel/Fax : : +90 232 3432474