Research Article
BibTex RIS Cite

Year 2025, Volume: 30 Issue: 1, 55 - 66, 23.06.2025
https://doi.org/10.17557/tjfc.1480172

Abstract

References

  • Abhishek, K., Shrivastava, A., Vimal, V., Gupta, A. K., Bhujbal, S. K., Biswas, J. K., Singh, L., Ghosh, P., Pandey, A., Sharma, P., & Kumar, M. (2022). Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: A state-of-the-art review. Science of the Total Environment, 853, 158562. https://doi.org/10.1016/j.scitotenv.2022.158562
  • Abou Hussien, E., Nada, W. M., & Mahrous, H. (2021). Improving chemical and microbial properties of calcareous soil and its productivity of Faba Bean (Vicia faba L.) plants by using compost tea enriched with humic acid and azolla. Egyptian Journal of Soil Science, 61(1), 27-44. https://doi.org/10.1016/j.jssas.2016.09.005
  • Aboukila, E. F., Nassar, I. N., Rashad, M., Hafez, M., & Norton, J. B. (2018). Reclamation of calcareous soil and improvement of squash growth using brewers’ spent grain and compost. Journal of the Saudi Society of Agricultural Sciences, 17(4), 390-397. https://doi.org/10.1016/j.jssas.2016.09.005
  • Alan, O., Budak, B., Sen, F., Gundogdu, M. (2024). Impact of integrated organomineral fertilizer application on growth, yield, quality, and health-related compounds of sweet corn. Turkish Journal Of Field Crops, 29(2), 206-217. https://doi.org/10.17557/tjfc.1558495
  • Allen, O. N. (1950). Experimental in soil bacteriology (2nd ed.). Burgen Pul. Co.
  • Aneja, K. R. (2007). Experiments in microbiology, plant pathology and biotechnology. New Age International.
  • Baghbani−Arani, A., Modarres−Sanavy, S. A. M., Mashhadi Akbar-Boojar, M., & Mokhtassi−Bidgoli, A. (2017). Towards improving the agronomic performance, chlorophyll fluorescence parameters and pigments in fenugreek using zeolite and vermicompost under deficit water stress. Industrial Crops and Products, 109: 346−357. https://doi.org/10.1016/j.indcrop.2017.09.026
  • Baiamonte, G., Crescimanno, G., Parrino, F., & De Pasquale, C. (2019). Effect of biochar on the physical and structural properties of a sandy soil. Catena, 175: 294–303. https://doi.org/10.1016/j.catena.2018.12.019
  • Bezabeh, M. W., Haile, M., Sogn, T. A., & Eich-Greatorex, S. (2021). Yield, nutrient uptake, and economic return of faba bean (Vicia faba L.) in calcareous soil as affected by compost types. Journal of Agriculture and Food Research, 6, 100237. https://doi.org/10.1016/j.jafr.2021.100237
  • Chen, X., Lewis, S., Heal, K. V., Lin, Q., & Sohi, S. P. (2021). Biochar engineering and ageing influence the spatiotemporal dynamics of soil pH in the charosphere. Geoderma, 386: 114919. https://doi.org/10.1016/j.geoderma.2020.114919
  • Chen, X., Liu, M., Kuzyakov, Y., Li, W., Liu, J., Jiang, C., & Li, Z. (2018). Incorporation of rice straw carbon into dissolved organic matter and microbial biomass along a 100−year paddy soil chronosequence. Applied Soil Ecology, 130: 84−90. https://doi.org/10.1016/j.apsoil.2018.06.010
  • Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D., & Julson, J. L. (2014). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60: 393–404. https://doi.org/10.1080/03650340.2013.789870
  • Chinthapalli, B., Dibar, D. T., Chitra, D. S. V., & Leta, M. B. (2015). A comparative study on the effect of organic and inorganic fertilizers on agronomic performance of faba bean (Vicia faba L.) and pea (Pisum sativum L.). Agriculture, Forestry and Fisheries, 4(6): 263‒268. https://doi.org/10.11648/j.aff.20150406.14
  • Cukurcalıoglu, K., Takil, E., & Kayan, N. (2023). Influence of bacteria and chicken manure on yield and yield components of bean (Phaseolus vulgaris L.). Turkish Journal Of Field Crops, 28(2), 138-146. https://doi.org/10.17557/tjfc.1265059
  • Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., & Zheng, B. (2016). Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36: 1–18. https://doi.org/10.1007/s13593-016-0365-y
  • El Nahhas, N., AlKahtani, M. D. F., Abdelaal, K. A. A., Al Husnain, L., AlGwaiz, H. I. M., Hafez, Y. M., Attia, K. A., & Elkelish, A. (2021). Biochar and jasmonic acid application attenuates antioxidative systems and improves growth, physiology, nutrient uptake and productivity of faba bean (Vicia faba L.) irrigated with saline water. Plant Physiology and Biochemistry, 166: 807- 817. https://doi.org/10.1016/j.plaphy.2021.06.021
  • Elad, Y., Cytryn, E., Harel, Y. M., Lew, B., & Graber, E. R. (2011). The biochar effect: plant resistance to biotic stresses. Phytopathologia Mediterranea, 50(3): 335-349. https://doi.org/10.14601/Phytopathol_Mediterr-9360
  • El-Haddad, M. E., Zayed, M. S., El-Sayed, G. A. M., Hassanein, M. K., & El-Satar, A. A. (2014). Evaluation of compost, vermicompost and their teas produced from rice straw as affected by addition of different supplements. Annals of Agricultural Sciences, 59(2): 243−251. https://doi.org/10.1016/j.aoas.2014.11.008
  • El-Naggar, A., Shaheen, S. M., Chang, S. X., Hou, D., Ok, Y. S., & Rinklebe, J. (2021). Biochar surface functionality plays a vital role in (im) mobilization and phytoavailability of soil vanadium. ACS Sustainable Chemistry and Engineering, 9(19): 6864- 6874. https://doi.org/10.1021/acssuschemeng.1c01888
  • Eo, J., & Park, K. C. (2019). Effect of vermicompost application on root growth and ginsenoside content of Panax ginseng. Journal of Environmental Management, 234: 458−463. https://doi.org/10.1016/j.jenvman.2019.01.003
  • FAOSTAT, Crops and Livestock Products Online Database”, FAO. (2022). http://www.fao.org/faostat/en/#data/QV
  • Gad, N., Fekry, M. E. A., & Abou-Hussein, S. D. (2017). Improvement of Faba bean (Vicia faba L.) productivity by using cobalt and different levels of compost under new reclaimed lands. Middle East Journal of Applied Sciences, 7 (3), 493-500. https://doi.org/10.21608/mjas.2017.19312
  • Guridi, I., Calderín, G., Louro, B., Martínez, B., & Rosquete, B. (2017). The humic acids from vermicompost protect rice (Oryza sativa L.) plants against a posterior hidric stress. Cultivos Tropicales, 38(2): 53−60. https://doi.org/10.13140/RG.2.2.18660.78725
  • Hammadi, A. S., & Alwan, B. M. (2023). Studying the Effect of Biochar, Vermicompost, Potassium Silicate and Perfusion Separator on the Physical and Chemical Properties of Soil and (Vigna radiate L.). In IOP Conference Series: Earth and Environmental Science (IOP Publishing), 1262(8), 082036. https://doi.org/10.1088/1755-1315/1262/8/082036
  • Hesse, P.R. (1971). A textbook of soil chemistry analysis. John Murray Pub. Ltd. London. Houassine, D., Latati, M., Rebouh, N. Y., & Gérard, F. (2019). Phosphorus acquisition processes in the field: study of faba bean cultivated on calcareous soils in Algeria. Archives of Agronomy and Soil Science, 66(2), 168–181. https://doi.org/10.1080/03650340.2019.1605166
  • Jackson, M. L. (2005). Soil chemical analysis: Advanced course. UW-Madison Libraries parallel press.
  • Jensen, H. L. (1930). Actinomycetes in Danish soil. Soil Science, 30(1):59-77.
  • Jones, J. J. (1972). Plant tissue analysis for micronutrients. In J.J. Mortvedt, P.M. Giordano, & W.L. Lindsay (Eds.), Micronutrients in agriculture (pp. 319– 346). Madison, WI: Soil Science Society of America.
  • Kim, H. S., Kim, K. R., Yang, J. E., Ok, Y. S., Owens, G., Nehls, T., & Kim, K. H. (2016). Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere, 142: 153-159. https://doi.org/10.1016/j.chemosphere.2015.07.068
  • Lazcano, C., Gómez-Brandón, M., & Domínguez, J. (2008). Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere, 72(7): 1013–1019. https://doi.org/10.1016/j.chemosphere.2008.04.023
  • Lehmann, J. (2007). Bio-energy in the black. Frontiers in Ecology and Environment, 5:38–387. https://doi.org/10.1890/1540- 9295(2007)5[381:BITB]2.0.CO;2
  • Lim, S. L., Lee, L. H., & Wu, T. Y. (2016). Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis. Journal of Cleaner Production, 111: 262−278. https://doi.org/10.1016/j.jclepro.2015.08.083
  • Mahanta, K., Jha, D. K., Rajkhowa, D. J., & Manoj-Kumar. (2012). Microbial enrichment of vermicompost prepared from different plant biomasses and their effect on rice (Oryza sativa L.) growth and soil fertility. Biological Agriculture and Horticulture, 28(4):241−250. https://doi.org/10.1080/01448765.2012.717794
  • Martin, J. P. (1950). Methods for estimating soil fungi. Soil Science 69: 215-233.
  • Martinez-Balmori, D., Olivares, F. L., Spaccini, R., Aguiar, K. P., Araújo, M. F., Aguiar, N. O., Guridi, F., & Canellas, L. P. (2013). Molecular characteristics of vermicompost and their relationship to preservation of inoculated nitrogen-fixing bacteria. Journal of Analytical and Applied Pyrolysis, 104: 540−550. https://doi.org/10.1016/j.jaap.2013.05.008
  • Mesgaran, M. B., Madani, K., Hashemi, H., & Azadi, P. (2017). Iran’s land suitability for agriculture. Scientific Reports, 7, 7670. https://doi.org/10.1038/s41598-017-08066-4
  • Ministry of Agriculture-Jihad in Iran Yearbook. (2022). Available online at: https://www.maj.ir Mohamed, I., El-Meihy, R., Ali, M., Chen, F., & Raleve, D. (2017). Interactive effects of biochar and micronutrients on faba bean growth, symbiotic performance, and soil properties. Journal of Plant Nutrition and Soil Science, 180(6): 729-738. https://doi.org/10.1002/jpln.201700293
  • Mosavi-Azandehi, S. M., Ansari, M. H., Sharifi, P., & Hoor, S. S. (2023). The effect of organic amendments on soil microbial activity and yield of faba bean (Vicia faba) inoculated with Rhizobium leguminosarum. The Indian Journal of Agricultural Sciences, 93(8): 893-898. https://doi.org/10.56093/ijas.v93i8.108630
  • Mulvaney, R. L. (1996). Nitrogen-Inorganic Forms. In Methods of soil analysis. Part-3- Chemical Methods. P. 1123-1184. SSSA, Inc., ASA, Inc. Madison, WI. https://doi.org/10.2136/sssabookser5.3.c36
  • Nafees, M., Ullah, S., & Ahmed, I. (2023). Plant growth-promoting rhizobacteria and biochar as bioeffectors and bioalleviators of drought stress in faba bean (Vicia faba L.). Folia Microbiologica, 1-14. Advance online publication. https://doi.org/10.1007/s12223-023-01083-7
  • Nelissen, V., Ruysschaert, G., Manka’Abusi, D., D’Hose, T., De Beuf, K., Al-Barri, B., & Boeckx, P. (2015). Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. European Journal of Agronomy, 62:65-78. https://doi.org/10.1016/j.eja.2014.09.006
  • Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, C. A. (1954). Estimation of available phosphorous in soils by extraction with sodium bicarbonate. U. S. Department of Agricultur Circular. No. 939.
  • Rekha, A., Srinivasan, L., Pavithra, S., Gomathi, T., Sudha, P. N., Lavanya, G., & Vidhya, A. (2023). Biosorption efficacy studies of Sargassum wightii and its biochar on the removal of chromium from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 105241.
  • Rivelli, A. R., & Libutti, A. (2022). Effect of biochar and inorganic or organic fertilizer co-application on soil properties, plant growth and nutrient content in Swiss chard. Agronomy, 12(9): 2089. https://doi.org/10.3390/agronomy12092089
  • Ruisi, P., Amato, G., Badagliacca, G., Frenda, A. S., Giambalvo, D., & Di Miceli, G. (2017). Agro-ecological benefits of faba bean for rainfed Mediterranean cropping systems. Italian Journal of Agronomy, 12, 865. https://doi.org/10.4081/ija.2017.865
  • Saikia, S. P., Dutta, S. P., Goswami, A., Bhau, B. S., & Kanjilal, P. B. (2010). Role of Azospirillum in the improvement of legumes. In D. K. Maheshwari (Ed.), Microbes for legume improvement (pp. 389-408). Springer. https://doi.org/10.1007/978-3-7091- 0143-1_14
  • Sarma, B., Farooq, M., Gogoi, N., Borkotoki, B., Kataki, R., & Garg, A. (2018). Soil organic carbon dynamics in wheat-Green gram crop rotation amended with vermicompost and biochar in combination with inorganic fertilizers: A comparative study. Journal of Cleaner Production, 201: 471-480. https://doi.org/10.1016/j.jclepro.2018.07.012
  • Senay, B., & Tepecik, M. (2024). Determination of the effect of biochar applications on soil physical and chemical properties and wheat (Triticum aestivum L.) germination and biomass. Journal of Tekirdag Agricultural Faculty, 21(2): 297-308. https://doi.org/10.33462/jotaf.1190812
  • Sheikh, Q. S., Al-Jumaily, A. R. A., & Aziz, J. M. (2022). Test of the Effectiveness of Biochar and Mineral Fertilizer on The Growth and Yield of Two Broad Bean (Vicia Faba L.). Texas Journal of Agriculture and Biological Sciences, 4: 42-57.
  • Shi, Q., Wang, W., Zhang, H., Bai, H., Liu, K., Zhang, J., Li, Z., & Zhu, W. (2023). Porous biochar derived from walnut shell as an efficient adsorbent for tetracycline removal. Bioresource Technology, 383:129213. https://doi.org/10.1016/j.biortech.2023.129213
  • Shiri, Z. M., & Farbodi, M. (2022). Qualitative evaluation of land suitability for olive, potato and cotton cultivation in Tarom in Zanjan. agriTECH, 42(2), 102-112. https://doi.org/10.22146/agritech.58222
  • Song, X., Li, H., Song, J., Chen, W., & Shi, L. (2022). Biochar/vermicompost promotes Hybrid Pennisetum plant growth and soil enzyme activity in saline soils. Plant Physiology and Biochemistry, 183, 96-110. https://doi.org/10.1016/j.plaphy.2022.05.009
  • Soobhany, N., Mohee, R., & Garg, V. K. (2017). A comparative analysis of composts and vermicomposts derived from municipal solid waste for the growth and yield of green bean (Phaseolus vulgaris L.). Environmental Science and Pollution Research, 24(12):11228–11239. https://doi.org/10.1007/s11356-017-8685-3
  • Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., De Macêdo, J. L. V., Blum, W. E. H., & Zech, W. (2007). Long term effects of manure, charcoal, and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291: 275-290. https://doi.org/10.1007/s11104-007-9193-9
  • Tepecik, M., Ekren, S., Ongun, A. R., & Sarikahya, N. B. (2024). Effects of biochar treatments on the elemental composition of tobacco (Nicotiana tabacum L.) leaves based on the priming period. Heliyon, 10; e23307. https://doi.org/10.1016/j.heliyon.2024.e23307
  • Tepecik, M., Kayıkcıoglu, H. H., & Kılıc, S. (2022). Effects of biochar obtained at different pyrolysis temperatures on plant nutrients of maize. Journal of Agriculture Faculty of Ege University, 59 (1):171-181.
  • Van Zwieten, L., Kimber, S., Morris, S., Chan, K., Downie, A., Rust, J., Joseph, S., & Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil, 327:235-246. https://doi.org/10.1007/s11104-009-0050-x
  • Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for determination soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37: 29-38. https://doi.org/10.20289/zfdergi.894427
  • Wu, Y., Lu, S., Zhu, Y., Zhang, Y., Wu, M., & Long, X. E. (2022). Microbes in a neutral-alkaline paddy soil react differentially to intact and acid washed biochar. Journal of Soils and Sediments, 22(12), 3137-3150. https://doi.org/10.1007/s11368-022- 03287-1
  • Yuksel, O., Balkan, A., Gocmen, D. B., Bilgin, O., & Baser, I. (2024). Effect of soil conditioners applied to seed on grain yield and yield characteristics in wheat. Turkish Journal Of Field Crops, 29(2), 121-128. https://doi.org/10.17557/tjfc.1491505
  • Zhang, R., Qu, Z., Liu, L., Yang, W., Wang, L., Li, J., & Zhang, D. (2022). Soil Respiration and Organic Carbon Response to Biochar and Their Influencing Factors. Atmosphere, 13(12), 2038. https://doi.org/10.3390/atmos13122038

Effect of Vermicompost and Biochar of Pruning Waste on Soil Properties and Faba Bean (Vicia faba L.) Yield under Calcareous Soil

Year 2025, Volume: 30 Issue: 1, 55 - 66, 23.06.2025
https://doi.org/10.17557/tjfc.1480172

Abstract

A two-year field study was conducted to compare the effect of biochar and vermicompost of olive tree pruning waste together with chemical fertilizer on microbial population and soil chemical status and faba bean yield in a calcareous soil in Tarem city, Iran. The treatments included wood biochar (BIC) at two levels of 5 and 10 t ha-1 (BIC5 and BIC10), wood vermicompost (VCM) at two levels of 5 and 10 t ha-1 (VCM5 and VCM10), 50 and 100% recommended chemical fertilizer (NPK50 and NPK100) along with a control. The results showed that the highest population of bacteria was obtained from BIC10 (297.8 × 106 CFU/g dry soil), actinomycetes from VCM10 (99.5 × 105 CFU/g dry soil), and fungi from NPK50 (104.5 × 103 CFU/g dry soil). In both years, vermicompost treatments reduced soil pH by 1.6-9.2% compared to control, but biochars showed the highest pH and EC. Organic treatments, especially VCM10 and BIC10, increased the soil OC compared to the control (12.9-35.4%) and NPK (57.2-79.1%). Ammonium (N-NH4+ ) and nitrate (N-NO3-) nitrogen of soil decreased in line with increasing the use of biochar (BIC10) and vermicompost (VCM10), but increasing NPK, from NPK50 to NPK100, increased soil N-NH4+ and N-NO3─ by 21.3% and 10.7%, respectively. In both years, the highest number of pods (45.9 and 57.8 in the first and second year, respectively), number of seeds (187.3 and 240.2 in the first and second year, respectively) and seed yield (1.997 and 2.502 t ha-1 in first and second year, respectively) were obtained from soils treated with VCM10. In addition, the highest amount of N seeds (5.579%), K (0.839%) and Fe (66.3 mg kg-1) was observed in BIC10 and the highest amount of P seeds (0.519%) was observed in VCM10. Totally, organic amendments were superior to chemical fertilizers in terms of improving soil fertility and seed yield.

References

  • Abhishek, K., Shrivastava, A., Vimal, V., Gupta, A. K., Bhujbal, S. K., Biswas, J. K., Singh, L., Ghosh, P., Pandey, A., Sharma, P., & Kumar, M. (2022). Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: A state-of-the-art review. Science of the Total Environment, 853, 158562. https://doi.org/10.1016/j.scitotenv.2022.158562
  • Abou Hussien, E., Nada, W. M., & Mahrous, H. (2021). Improving chemical and microbial properties of calcareous soil and its productivity of Faba Bean (Vicia faba L.) plants by using compost tea enriched with humic acid and azolla. Egyptian Journal of Soil Science, 61(1), 27-44. https://doi.org/10.1016/j.jssas.2016.09.005
  • Aboukila, E. F., Nassar, I. N., Rashad, M., Hafez, M., & Norton, J. B. (2018). Reclamation of calcareous soil and improvement of squash growth using brewers’ spent grain and compost. Journal of the Saudi Society of Agricultural Sciences, 17(4), 390-397. https://doi.org/10.1016/j.jssas.2016.09.005
  • Alan, O., Budak, B., Sen, F., Gundogdu, M. (2024). Impact of integrated organomineral fertilizer application on growth, yield, quality, and health-related compounds of sweet corn. Turkish Journal Of Field Crops, 29(2), 206-217. https://doi.org/10.17557/tjfc.1558495
  • Allen, O. N. (1950). Experimental in soil bacteriology (2nd ed.). Burgen Pul. Co.
  • Aneja, K. R. (2007). Experiments in microbiology, plant pathology and biotechnology. New Age International.
  • Baghbani−Arani, A., Modarres−Sanavy, S. A. M., Mashhadi Akbar-Boojar, M., & Mokhtassi−Bidgoli, A. (2017). Towards improving the agronomic performance, chlorophyll fluorescence parameters and pigments in fenugreek using zeolite and vermicompost under deficit water stress. Industrial Crops and Products, 109: 346−357. https://doi.org/10.1016/j.indcrop.2017.09.026
  • Baiamonte, G., Crescimanno, G., Parrino, F., & De Pasquale, C. (2019). Effect of biochar on the physical and structural properties of a sandy soil. Catena, 175: 294–303. https://doi.org/10.1016/j.catena.2018.12.019
  • Bezabeh, M. W., Haile, M., Sogn, T. A., & Eich-Greatorex, S. (2021). Yield, nutrient uptake, and economic return of faba bean (Vicia faba L.) in calcareous soil as affected by compost types. Journal of Agriculture and Food Research, 6, 100237. https://doi.org/10.1016/j.jafr.2021.100237
  • Chen, X., Lewis, S., Heal, K. V., Lin, Q., & Sohi, S. P. (2021). Biochar engineering and ageing influence the spatiotemporal dynamics of soil pH in the charosphere. Geoderma, 386: 114919. https://doi.org/10.1016/j.geoderma.2020.114919
  • Chen, X., Liu, M., Kuzyakov, Y., Li, W., Liu, J., Jiang, C., & Li, Z. (2018). Incorporation of rice straw carbon into dissolved organic matter and microbial biomass along a 100−year paddy soil chronosequence. Applied Soil Ecology, 130: 84−90. https://doi.org/10.1016/j.apsoil.2018.06.010
  • Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D., & Julson, J. L. (2014). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60: 393–404. https://doi.org/10.1080/03650340.2013.789870
  • Chinthapalli, B., Dibar, D. T., Chitra, D. S. V., & Leta, M. B. (2015). A comparative study on the effect of organic and inorganic fertilizers on agronomic performance of faba bean (Vicia faba L.) and pea (Pisum sativum L.). Agriculture, Forestry and Fisheries, 4(6): 263‒268. https://doi.org/10.11648/j.aff.20150406.14
  • Cukurcalıoglu, K., Takil, E., & Kayan, N. (2023). Influence of bacteria and chicken manure on yield and yield components of bean (Phaseolus vulgaris L.). Turkish Journal Of Field Crops, 28(2), 138-146. https://doi.org/10.17557/tjfc.1265059
  • Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., & Zheng, B. (2016). Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36: 1–18. https://doi.org/10.1007/s13593-016-0365-y
  • El Nahhas, N., AlKahtani, M. D. F., Abdelaal, K. A. A., Al Husnain, L., AlGwaiz, H. I. M., Hafez, Y. M., Attia, K. A., & Elkelish, A. (2021). Biochar and jasmonic acid application attenuates antioxidative systems and improves growth, physiology, nutrient uptake and productivity of faba bean (Vicia faba L.) irrigated with saline water. Plant Physiology and Biochemistry, 166: 807- 817. https://doi.org/10.1016/j.plaphy.2021.06.021
  • Elad, Y., Cytryn, E., Harel, Y. M., Lew, B., & Graber, E. R. (2011). The biochar effect: plant resistance to biotic stresses. Phytopathologia Mediterranea, 50(3): 335-349. https://doi.org/10.14601/Phytopathol_Mediterr-9360
  • El-Haddad, M. E., Zayed, M. S., El-Sayed, G. A. M., Hassanein, M. K., & El-Satar, A. A. (2014). Evaluation of compost, vermicompost and their teas produced from rice straw as affected by addition of different supplements. Annals of Agricultural Sciences, 59(2): 243−251. https://doi.org/10.1016/j.aoas.2014.11.008
  • El-Naggar, A., Shaheen, S. M., Chang, S. X., Hou, D., Ok, Y. S., & Rinklebe, J. (2021). Biochar surface functionality plays a vital role in (im) mobilization and phytoavailability of soil vanadium. ACS Sustainable Chemistry and Engineering, 9(19): 6864- 6874. https://doi.org/10.1021/acssuschemeng.1c01888
  • Eo, J., & Park, K. C. (2019). Effect of vermicompost application on root growth and ginsenoside content of Panax ginseng. Journal of Environmental Management, 234: 458−463. https://doi.org/10.1016/j.jenvman.2019.01.003
  • FAOSTAT, Crops and Livestock Products Online Database”, FAO. (2022). http://www.fao.org/faostat/en/#data/QV
  • Gad, N., Fekry, M. E. A., & Abou-Hussein, S. D. (2017). Improvement of Faba bean (Vicia faba L.) productivity by using cobalt and different levels of compost under new reclaimed lands. Middle East Journal of Applied Sciences, 7 (3), 493-500. https://doi.org/10.21608/mjas.2017.19312
  • Guridi, I., Calderín, G., Louro, B., Martínez, B., & Rosquete, B. (2017). The humic acids from vermicompost protect rice (Oryza sativa L.) plants against a posterior hidric stress. Cultivos Tropicales, 38(2): 53−60. https://doi.org/10.13140/RG.2.2.18660.78725
  • Hammadi, A. S., & Alwan, B. M. (2023). Studying the Effect of Biochar, Vermicompost, Potassium Silicate and Perfusion Separator on the Physical and Chemical Properties of Soil and (Vigna radiate L.). In IOP Conference Series: Earth and Environmental Science (IOP Publishing), 1262(8), 082036. https://doi.org/10.1088/1755-1315/1262/8/082036
  • Hesse, P.R. (1971). A textbook of soil chemistry analysis. John Murray Pub. Ltd. London. Houassine, D., Latati, M., Rebouh, N. Y., & Gérard, F. (2019). Phosphorus acquisition processes in the field: study of faba bean cultivated on calcareous soils in Algeria. Archives of Agronomy and Soil Science, 66(2), 168–181. https://doi.org/10.1080/03650340.2019.1605166
  • Jackson, M. L. (2005). Soil chemical analysis: Advanced course. UW-Madison Libraries parallel press.
  • Jensen, H. L. (1930). Actinomycetes in Danish soil. Soil Science, 30(1):59-77.
  • Jones, J. J. (1972). Plant tissue analysis for micronutrients. In J.J. Mortvedt, P.M. Giordano, & W.L. Lindsay (Eds.), Micronutrients in agriculture (pp. 319– 346). Madison, WI: Soil Science Society of America.
  • Kim, H. S., Kim, K. R., Yang, J. E., Ok, Y. S., Owens, G., Nehls, T., & Kim, K. H. (2016). Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere, 142: 153-159. https://doi.org/10.1016/j.chemosphere.2015.07.068
  • Lazcano, C., Gómez-Brandón, M., & Domínguez, J. (2008). Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere, 72(7): 1013–1019. https://doi.org/10.1016/j.chemosphere.2008.04.023
  • Lehmann, J. (2007). Bio-energy in the black. Frontiers in Ecology and Environment, 5:38–387. https://doi.org/10.1890/1540- 9295(2007)5[381:BITB]2.0.CO;2
  • Lim, S. L., Lee, L. H., & Wu, T. Y. (2016). Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis. Journal of Cleaner Production, 111: 262−278. https://doi.org/10.1016/j.jclepro.2015.08.083
  • Mahanta, K., Jha, D. K., Rajkhowa, D. J., & Manoj-Kumar. (2012). Microbial enrichment of vermicompost prepared from different plant biomasses and their effect on rice (Oryza sativa L.) growth and soil fertility. Biological Agriculture and Horticulture, 28(4):241−250. https://doi.org/10.1080/01448765.2012.717794
  • Martin, J. P. (1950). Methods for estimating soil fungi. Soil Science 69: 215-233.
  • Martinez-Balmori, D., Olivares, F. L., Spaccini, R., Aguiar, K. P., Araújo, M. F., Aguiar, N. O., Guridi, F., & Canellas, L. P. (2013). Molecular characteristics of vermicompost and their relationship to preservation of inoculated nitrogen-fixing bacteria. Journal of Analytical and Applied Pyrolysis, 104: 540−550. https://doi.org/10.1016/j.jaap.2013.05.008
  • Mesgaran, M. B., Madani, K., Hashemi, H., & Azadi, P. (2017). Iran’s land suitability for agriculture. Scientific Reports, 7, 7670. https://doi.org/10.1038/s41598-017-08066-4
  • Ministry of Agriculture-Jihad in Iran Yearbook. (2022). Available online at: https://www.maj.ir Mohamed, I., El-Meihy, R., Ali, M., Chen, F., & Raleve, D. (2017). Interactive effects of biochar and micronutrients on faba bean growth, symbiotic performance, and soil properties. Journal of Plant Nutrition and Soil Science, 180(6): 729-738. https://doi.org/10.1002/jpln.201700293
  • Mosavi-Azandehi, S. M., Ansari, M. H., Sharifi, P., & Hoor, S. S. (2023). The effect of organic amendments on soil microbial activity and yield of faba bean (Vicia faba) inoculated with Rhizobium leguminosarum. The Indian Journal of Agricultural Sciences, 93(8): 893-898. https://doi.org/10.56093/ijas.v93i8.108630
  • Mulvaney, R. L. (1996). Nitrogen-Inorganic Forms. In Methods of soil analysis. Part-3- Chemical Methods. P. 1123-1184. SSSA, Inc., ASA, Inc. Madison, WI. https://doi.org/10.2136/sssabookser5.3.c36
  • Nafees, M., Ullah, S., & Ahmed, I. (2023). Plant growth-promoting rhizobacteria and biochar as bioeffectors and bioalleviators of drought stress in faba bean (Vicia faba L.). Folia Microbiologica, 1-14. Advance online publication. https://doi.org/10.1007/s12223-023-01083-7
  • Nelissen, V., Ruysschaert, G., Manka’Abusi, D., D’Hose, T., De Beuf, K., Al-Barri, B., & Boeckx, P. (2015). Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. European Journal of Agronomy, 62:65-78. https://doi.org/10.1016/j.eja.2014.09.006
  • Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, C. A. (1954). Estimation of available phosphorous in soils by extraction with sodium bicarbonate. U. S. Department of Agricultur Circular. No. 939.
  • Rekha, A., Srinivasan, L., Pavithra, S., Gomathi, T., Sudha, P. N., Lavanya, G., & Vidhya, A. (2023). Biosorption efficacy studies of Sargassum wightii and its biochar on the removal of chromium from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 105241.
  • Rivelli, A. R., & Libutti, A. (2022). Effect of biochar and inorganic or organic fertilizer co-application on soil properties, plant growth and nutrient content in Swiss chard. Agronomy, 12(9): 2089. https://doi.org/10.3390/agronomy12092089
  • Ruisi, P., Amato, G., Badagliacca, G., Frenda, A. S., Giambalvo, D., & Di Miceli, G. (2017). Agro-ecological benefits of faba bean for rainfed Mediterranean cropping systems. Italian Journal of Agronomy, 12, 865. https://doi.org/10.4081/ija.2017.865
  • Saikia, S. P., Dutta, S. P., Goswami, A., Bhau, B. S., & Kanjilal, P. B. (2010). Role of Azospirillum in the improvement of legumes. In D. K. Maheshwari (Ed.), Microbes for legume improvement (pp. 389-408). Springer. https://doi.org/10.1007/978-3-7091- 0143-1_14
  • Sarma, B., Farooq, M., Gogoi, N., Borkotoki, B., Kataki, R., & Garg, A. (2018). Soil organic carbon dynamics in wheat-Green gram crop rotation amended with vermicompost and biochar in combination with inorganic fertilizers: A comparative study. Journal of Cleaner Production, 201: 471-480. https://doi.org/10.1016/j.jclepro.2018.07.012
  • Senay, B., & Tepecik, M. (2024). Determination of the effect of biochar applications on soil physical and chemical properties and wheat (Triticum aestivum L.) germination and biomass. Journal of Tekirdag Agricultural Faculty, 21(2): 297-308. https://doi.org/10.33462/jotaf.1190812
  • Sheikh, Q. S., Al-Jumaily, A. R. A., & Aziz, J. M. (2022). Test of the Effectiveness of Biochar and Mineral Fertilizer on The Growth and Yield of Two Broad Bean (Vicia Faba L.). Texas Journal of Agriculture and Biological Sciences, 4: 42-57.
  • Shi, Q., Wang, W., Zhang, H., Bai, H., Liu, K., Zhang, J., Li, Z., & Zhu, W. (2023). Porous biochar derived from walnut shell as an efficient adsorbent for tetracycline removal. Bioresource Technology, 383:129213. https://doi.org/10.1016/j.biortech.2023.129213
  • Shiri, Z. M., & Farbodi, M. (2022). Qualitative evaluation of land suitability for olive, potato and cotton cultivation in Tarom in Zanjan. agriTECH, 42(2), 102-112. https://doi.org/10.22146/agritech.58222
  • Song, X., Li, H., Song, J., Chen, W., & Shi, L. (2022). Biochar/vermicompost promotes Hybrid Pennisetum plant growth and soil enzyme activity in saline soils. Plant Physiology and Biochemistry, 183, 96-110. https://doi.org/10.1016/j.plaphy.2022.05.009
  • Soobhany, N., Mohee, R., & Garg, V. K. (2017). A comparative analysis of composts and vermicomposts derived from municipal solid waste for the growth and yield of green bean (Phaseolus vulgaris L.). Environmental Science and Pollution Research, 24(12):11228–11239. https://doi.org/10.1007/s11356-017-8685-3
  • Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., De Macêdo, J. L. V., Blum, W. E. H., & Zech, W. (2007). Long term effects of manure, charcoal, and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291: 275-290. https://doi.org/10.1007/s11104-007-9193-9
  • Tepecik, M., Ekren, S., Ongun, A. R., & Sarikahya, N. B. (2024). Effects of biochar treatments on the elemental composition of tobacco (Nicotiana tabacum L.) leaves based on the priming period. Heliyon, 10; e23307. https://doi.org/10.1016/j.heliyon.2024.e23307
  • Tepecik, M., Kayıkcıoglu, H. H., & Kılıc, S. (2022). Effects of biochar obtained at different pyrolysis temperatures on plant nutrients of maize. Journal of Agriculture Faculty of Ege University, 59 (1):171-181.
  • Van Zwieten, L., Kimber, S., Morris, S., Chan, K., Downie, A., Rust, J., Joseph, S., & Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil, 327:235-246. https://doi.org/10.1007/s11104-009-0050-x
  • Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for determination soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37: 29-38. https://doi.org/10.20289/zfdergi.894427
  • Wu, Y., Lu, S., Zhu, Y., Zhang, Y., Wu, M., & Long, X. E. (2022). Microbes in a neutral-alkaline paddy soil react differentially to intact and acid washed biochar. Journal of Soils and Sediments, 22(12), 3137-3150. https://doi.org/10.1007/s11368-022- 03287-1
  • Yuksel, O., Balkan, A., Gocmen, D. B., Bilgin, O., & Baser, I. (2024). Effect of soil conditioners applied to seed on grain yield and yield characteristics in wheat. Turkish Journal Of Field Crops, 29(2), 121-128. https://doi.org/10.17557/tjfc.1491505
  • Zhang, R., Qu, Z., Liu, L., Yang, W., Wang, L., Li, J., & Zhang, D. (2022). Soil Respiration and Organic Carbon Response to Biochar and Their Influencing Factors. Atmosphere, 13(12), 2038. https://doi.org/10.3390/atmos13122038
There are 61 citations in total.

Details

Primary Language English
Subjects Agronomy
Journal Section Articles
Authors

Mohammad Hossein Namaki This is me 0009-0000-0706-593X

Mohammad Hossein Ansari 0000-0002-2186-4946

Hassan Akhgari This is me 0000-0003-1357-4030

Publication Date June 23, 2025
Submission Date May 7, 2024
Acceptance Date April 1, 2025
Published in Issue Year 2025 Volume: 30 Issue: 1

Cite

APA Namaki, M. H., Ansari, M. H., & Akhgari, H. (2025). Effect of Vermicompost and Biochar of Pruning Waste on Soil Properties and Faba Bean (Vicia faba L.) Yield under Calcareous Soil. Turkish Journal Of Field Crops, 30(1), 55-66. https://doi.org/10.17557/tjfc.1480172

Turkish Journal of Field Crops is published by the Society of Field Crops Science and issued twice a year.
Owner : Prof. Dr. Behçet KIR
Ege University, Faculty of Agriculture,Department of Field Crops
Editor in Chief : Prof. Dr. Emre ILKER
Address : 848 sok. 2. Beyler İşhanı No:72, Kat:3 D.313 35000 Konak-Izmir, TURKEY
Email :  turkishjournaloffieldcrops@gmail.com contact@field-crops.org
Tel : +90 232 3112679
Tel/Fax : : +90 232 3432474