Research Article
BibTex RIS Cite

Year 2025, Volume: 30 Issue: 1, 175 - 191, 23.06.2025
https://doi.org/10.17557/tjfc.1515618

Abstract

References

  • Arab, S., Baradaran Firouzabadi, M., Gholami, A., & Haydari, M. (2022). Physiological responses of soybean plants to pretreatment and foliar spraying with ellagic acid and seaweed extract under accelerated aging. South African Journal of Botany, 148, 510– 518. https://doi.org/10.1016/j.sajb.2022.05.005
  • Arnao, M. B., & Hernández-Ruiz, J. (2014). Melatonin: Plant growth regulator and/or biostimulator during stress? Trends in Plant Science, 19(12), 789–797. https://doi.org/10.1016/j.tplants.2014.07.006
  • Arnao, M. B., & Hernández-Ruiz, J. (2015). Functions of melatonin in plants: A review. Journal of Pineal Research, 59(2), 133– 150. https://doi.org/10.1111/jpi.12253
  • Aydin, M., Erdal, B., & Yilmaz, Z. (2021). Effects of different growth regulators on yield and quality parameters of soybean (Glycine max L.) under drought conditions. Turkish Journal of Field Crops, 26(2), 88–95.
  • Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M., & Nonogaki, H. (2013). Seeds: Physiology of development, germination and dormancy (3rd ed.). Springer.
  • Bouché, N., & Fromm, H. (2004). GABA in plants: Just a metabolite? Trends in Plant Science, 9(3), 110–115. https://doi.org/10.1016/j.tplants.2004.01.006
  • Cakmak, I., & Horst, W. (1991). Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tip of soybean (Glycine max). Journal of Plant Physiology, 83, 463–468.
  • Delijani, N. B., Moshki, A., Matinizadeh, M., Ravanbakhsh, H., & Nouri, E. (2022). The effects of fire and seasonal variations on soil properties in Juniperus excelsa M. Bieb. stands in the Alborz Mountains, Iran. Journal of Forestry Research, 33(5), 1471– 1479. https://doi.org/10.1016/j.plaphy.2019.10.028
  • Demir, S., Koc, N., & Bayraktar, E. (2023). Physiological and biochemical responses of maize genotypes to accelerated aging stress. Turkish Journal of Field Crops, 28(2), 134–141.
  • Dou, N., Zhang, H., & Wu, C. (2021). The versatile GABA in plants. Plant Signaling & Behavior, 16(3), 1862565. https://doi.org/10.1080/15592324.2020.1862565
  • Du, Z., & Bramley, W. J. (1992). Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. Journal of Agricultural and Food Chemistry, 40(9), 1566–1570.
  • Ebone, L. A., Caverzan, A., & Chavarria, G. (2019). Physiologic alterations in orthodox seeds due to deterioration processes. Plant Physiology and Biochemistry, 145, 34–42.
  • El-Sanatawy, A. M., Ash-Shormillesy, S. M., Qabil, N., Awad, M. F., & Mansour, E. (2021). Seed halo-priming improves seedling vigor, grain yield, and water use efficiency of maize under varying irrigation regimes. Water, 13(15), 2115. https://doi.org/10.3390/w13152115
  • Farouk, S., & Al-Amri, S. M. (2019). Ameliorative roles of melatonin and/or zeolite on chromium-induced leaf senescence in marjoram plants by activating antioxidant defense, osmolyte accumulation, and ultrastructural modification. Industrial Crops and Products, 142, 111823. https://doi.org/10.1016/j.indcrop.2019.111823
  • Gong, X. Q., Shi, S. T., Dou, F. F., Song, Y., & Ma, F. W. (2017). Exogenous melatonin alleviates alkaline stress in Malus hupehensis Rehd. by regulating the biosynthesis of polyamines. Molecules, 22, 1542. https://doi.org/10.3390/molecules22091542
  • Gould, K. S. (2004). Nature’s Swiss army knife: The diverse protective roles of anthocyanins in leaves. Journal of Biomedicine and Biotechnology, 2004(5), 314–320. https://doi.org/10.1155/S1110724304406147
  • Govindaraj, M., Masilamani, P., Alex Albert, V., & Bhaskaran, M. (2017). Role of antioxidants in seed quality: A review. Agricultural Reviews, 38(3), 180–190. https://doi.org/10.18805/ag.v38i03.8977
  • Hasan, M. K., Ahammed, G. J., Yin, L., Shi, K., Xia, X., & Zhou, Y. (2021). Melatonin mitigates salinity-induced photosynthetic inhibition and oxidative stress in tomato seedlings by enhancing antioxidant machinery and photosystem performance. Frontiers in Plant Science, 12, 634770. https://doi.org/10.3389/fpls.2021.634770
  • Hu, X., Xu, Z., Xu, W., Li, J., Zhao, N., & Zhou, Y. (2015). Application of γ-aminobutyric acid demonstrates a protective role of polyamine and GABA metabolism in muskmelon seedlings under Ca(NO₃)₂ stress. Plant Physiology and Biochemistry, 92, 1– 10. https://doi.org/10.1016/j.plaphy.2015.04.006
  • ISTA (International Seed Testing Association). (1999). International rules for seed testing. Seed Science and Technology, 27.
  • Janas, M. K., & Posmyk, M. M. (2013). Melatonin, an underestimated natural substance with great potential for agricultural application. Acta Physiologiae Plantarum, 35, 3285–3292. https://doi.org/10.1007/s11738-013-1350-2
  • Jiang, Y., Liang, D., Liao, M. A., & Lin, L. (2017). Effects of melatonin on the growth of radish seedlings under salt stress. In Proceedings of the 3rd International Conference on Renewable Energy and Environmental Technology (ICERE), Hanoi, Vietnam.
  • Kaya, M., Yıldırım, A., & Özdemir, H. (2022). Seed priming with salicylic acid improves drought tolerance during germination and early seedling growth in chickpea (Cicer arietinum L.). Turkish Journal of Field Crops, 27(1), 45–52.
  • Kramer, P. S. (1983). Water relation of plants. Academic Press, 342–415.
  • Krishnan, S., Laskowski, K., Shukla, V., & Merewitz, E. B. (2013). Mitigation of drought stress damage by exogenous application of a non-protein amino acid γ–aminobutyric acid on perennial ryegrass. Journal of the American Society for Horticultural Science, 138(5), 358–366. https://doi.org/10.21273/JASHS.138.5.358
  • Li, C., Wang, P., Wei, Z., Liang, D., Liu, C., Yin, L., Jia, D., Fu, M., & Ma, F. (2016). The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. Journal of Pineal Research, 60(3), 291–302. https://doi.org/10.1111/jpi.12307
  • Li, J., Liu, Y., & Zhang, M. (2022). Melatonin increases growth and salt tolerance of Limonium bicolor by improving photosynthetic and antioxidant capacity. BMC Plant Biology, 22, 16. https://doi.org/10.1186/s12870-021-03402-x
  • Li, W., Yoo, E., Lee, S., Sung, J., Noh, H. J., Hwang, S. J., Desta, K. T., & Lee, G. A. (2022). Seed weight and genotype influence the total oil content and fatty acid composition of peanut seeds. Foods, 11(21), 3463. https://doi.org/10.3390/foods11213463
  • Li, X., Dun-Xian, T., Dong, J., & Fulai, L. (2016). Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley. Journal of Pineal Research, 61, 328–339. https://doi.org/10.1111/jpi.12350
  • Liang, D., Shen, Y., Ni, Z., Wang, Q., Lei, Z., Xu, N., Deng, Q., Lin, L., Wang, J., Lv, X., & Xia, H. (2018). Exogenous melatonin application delays senescence of kiwifruit leaves by regulating the antioxidant capacity and biosynthesis of flavonoids. Frontiers in Plant Science, 9, 00426. https://doi.org/10.3389/fpls.2018.00426
  • Lin, Y., Chen, T., Liu, S., Cai, Y., Shi, H., Zheng, D., Lan, Y., Yue, X., & Zhang, L. (2022). Quick and accurate monitoring peanut seedlings emergence rate through UAV video and deep learning. Computers and Electronics in Agriculture, 197, 106938. https://doi.org/10.1016/j.compag.2022.106938
  • Malekzadeh, P., Khara, J., & Heydari, R. (2014). Alleviating effects of exogenous gamma-aminobutyric acid on tomato seedling under chilling stress. Physiology and Molecular Biology of Plants, 20, 133–137. https://doi.org/10.1007/s12298-013-0203-5
  • Matinizadeh, M., Nouri, E., Bayranvand, M., Kolarikova, Z., & Janoušková, M. (2024). Arbuscular mycorrhiza and rhizosphere soil enzymatic activities as modulated by grazing intensity and plant species identity in a semi-arid grassland. Rhizosphere, 30, 100893. https://doi.org/10.1016/j.rhisph.2024.100893
  • Mita, S., Murano, N., Akaike, M., & Nakamura, K. (1997). Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for beta amylase and on the accumulation of anthocyanin those are inducible by sugars. The Plant Journal, 11(4), 841–851. https://doi.org/10.1046/j.1365-313X.1997.11040841.x
  • Moshki, A., Nouri, E., & Matinizadeh, M. (2024). Soil bio-physicochemical properties changes in response to grazing intensity and seasonal variations in an arid rangeland ecosystem of Iran. Ecopersia, 12(3), 307–316. http://dx.doi.org/10.22034/ECOPERSIA.12.3.307
  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867–880.
  • Nejad-Alimoradi, F., Nasibi, F., & Kalantari, K. M. (2019). 24-epibrassinolide pre-treatment alleviates the salt-induced deleterious effects in medicinal pumpkin (Cucurbita pepo) by enhancement of GABA content and enzymatic antioxidants. South African Journal of Botany, 124, 111–117. https://doi.org/10.1016/j.sajb.2019.04.027
  • Ramalho, J. C., Rodrigues, A. P., Lidon, F. C., Marques, L. M., Leitao, A. E., Fortunato, A. S., ... & Ribeiro-Barros, A. I. (2018). Stress cross-response of the antioxidative system promoted by superimposed drought and cold conditions in Coffea spp. PLoS ONE, 13(6), e0198694. https://doi.org/10.1371/journal.pone.0198694
  • Ramos-Ruiz, R., Poirot, E., & Flores-Mosquera, M. (2018). GABA, a non-protein amino acid ubiquitous in food matrices. Cogent Food & Agriculture, 4(1), 1534323. https://doi.org/10.1080/23311932.2018.1534323
  • Rousta, M. J., Matinizadeh, M., Zarafshar, M., & Nouri, E. (2023). Spate irrigation slightly ameliorates an arid soil's quality, but tree planting enhances its characteristics. Soil and Tillage Research, 229, 105658. https://doi.org/10.1016/j.still.2023.105658
  • Sairam, R. K., Rao, K. V., & Srivastava, G. C. (2002). Differential response of wheat genotypes to long-term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163, 1037–1046. https://doi.org/10.1016/S0168-9452(02)00278-9
  • Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., & Zheng, B. (2019). Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 9, 285. https://doi.org/10.3390/biom9070285
  • Shelp, B. J., Bozzo, G. G., Trobacher, C. P., Zarei, A., Deyman, K. L., & Brikis, C. J. (2012). Hypothesis/review: Contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Science, 193, 130–135. https://doi.org/10.1016/j.plantsci.2012.06.001
  • Shi, S. Q., Shi, Z., Jiang, Z. P., Qi, L. W., Sun, X. M., & Li, C. X. (2010). Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene production. Plant, Cell & Environment, 33(2), 149–162. https://doi.org/10.1111/j.1365-3040.2009.02065.x
  • Soleymani Aghdam, M., Razavi, F., & Kazemi, F. (2015). Maintaining the postharvest nutritional quality of peach fruits by γaminobutyric acid. International Journal of Plant Physiology and Biochemistry, 5, 1457–1463.
  • Steel, R. G. D., Torrie, J. H., & Dickey, D. A. (1997). Principles and procedures of statistics: A biometrical approach (3rd ed.). McGraw-Hill
  • Szafranska, K., Reiter, R. J., & Posmyk, M. M. (2016). Melatonin application to Pisum sativum L. seeds positively influences the function of the photosynthetic apparatus in growing seedlings during paraquat-induced oxidative stress. Frontiers in Plant Science, 7, 278. https://doi.org/10.3389/fpls.2016.00278
  • Tavakkol Afshari, R., & Seyyedi, S. M. (2020). Exogenous γ-aminobutyric acid can alleviate the adverse effects of seed aging on fatty acids composition and heterotrophic seedling growth in medicinal pumpkin. Industrial Crops and Products, 153, 112605. https://doi.org/10.1016/j.indcrop.2020.112605
  • Wang, C. Y., Fan, L. Q., Gao, H. B., Wu, X. L., Li, J. R., & Gong, B. B. (2014). Polyamine biosynthesis and degradation are modulated by exogenous gamma-aminobutyric acid in root-zone hypoxia-stressed melon roots. Journal of Plant Physiology and Biochemistry, 82, 17–26. https://doi.org/10.1016/j.plaphy.2014.04.018
  • Wang, R., Wu, F., Xie, X., & Yang, C. (2021). Quantitative trait locus mapping of seed vigor in soybean under –20°C storage and accelerated aging conditions via RAD sequencing. Molecular Biology Reports, 43, 1977–1996. https://doi.org/10.1007/s11033- 020-05483-y
  • Wei, W., Li, Q. T., Chu, Y. N., Reiter, R. J., Yu, X. M., Zhu, D. H., Zhang, W. K., Ma, B., Lin, Q., Zhang, J. S., & Chen, S. Y. (2015). Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany, 66(3), 695–707. https://doi.org/10.1093/jxb/eru392
  • Yan, H., Jia, S., & Mao, P. (2020). Melatonin priming alleviates aging-induced germination inhibition by regulating β-oxidation, protein translation, and antioxidant metabolism in oat (Avena sativa L.) seeds. International Journal of Molecular Sciences, 21, 1898. https://doi.org/10.3390/ijms21051898
  • Zhang, K., Zhang, Y., Sun, J., Meng, J., & Tao, J. (2021). Deterioration of orthodox seeds during ageing: Influencing factors, physiological alterations and the role of reactive oxygen species. Plant Physiology and Biochemistry, 158, 475–485. https://doi.org/10.1016/j.plaphy.2020.11.031
  • Zhang, N., Sun, Q., Zhang, H., Cao, Y., Weeda, S., Ren, S. H., & Guo, Y. D. (2015). Roles of melatonin in abiotic stress resistance in plants. Journal of Experimental Botany, 66, 647–656. https://doi.org/10.1093/jxb/eru336
  • Zhang, N., Zhao, B., Zhang, H. J., Weeda, S., Yang, C., Yang, Z. C., Ren, S., & Guo, Y. D. (2019). Melatonin promotes water‐ stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). Journal of Pineal Research, 72(2), e12580. https://doi.org/10.1111/jpi.12580

Physiological and Agronomic Responses of Peanut (Arachis hypogaea L.) to Melatonin Seed Pretreatment and GammaAminobutyric Acid Foliar Application under Accelerated Aging

Year 2025, Volume: 30 Issue: 1, 175 - 191, 23.06.2025
https://doi.org/10.17557/tjfc.1515618

Abstract

This research aims to investigate the effects of melatonin and gammaaminobutyric acid (GABA) on improving plant quality from aged peanut seeds, a factorial experiment was conducted in 2021–2022 using a randomized complete block design (RCBD) with three replications. Treatments included two seed quality levels (normal and aged), three melatonin pretreatment concentrations (0, 50, or 100 μM), and two GABA foliar application levels (0, or 1 mM). Seed aging was induced at 40°C and 96–100% humidity for 96 hours, followed by 8-hour melatonin soaking. Aging reduced pegs and pods per plant, 100-seed weight, and relative water content while increasing MDA, anthocyanin, and antioxidant enzyme activities (SOD, CAT). Pretreatment with 100 μM melatonin improved yield traits and enzyme activity in aged seeds. Both 50 and 100 μM melatonin increased anthocyanin and reduced MDA. GABA foliar application (1 mM) enhanced pegs per plant, 100-seed weight, RWC, shell yield, and antioxidant enzyme activity, while reducing MDA. Seed aging reduced yield by 45.81%, but melatonin pretreatments (50 and 100 μM) improved it by 9.91% and 11.33%, respectively. In normal seeds, these treatments increased yield by 7.53%
and 14.66%. GABA application improved yield by 6.53%. Path analysis showed that pod number and 100-seed weight had the strongest positive effects on yield, while SOD and CAT had indirect adverse effects. Overall, pretreatment with 100 μM melatonin and 1 mM GABA foliar application is recommended to mitigate seed aging effects and improve peanut yield.

Ethical Statement

The authors declare that they have no conflict of interest or personal relationships

Supporting Institution

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  • Arab, S., Baradaran Firouzabadi, M., Gholami, A., & Haydari, M. (2022). Physiological responses of soybean plants to pretreatment and foliar spraying with ellagic acid and seaweed extract under accelerated aging. South African Journal of Botany, 148, 510– 518. https://doi.org/10.1016/j.sajb.2022.05.005
  • Arnao, M. B., & Hernández-Ruiz, J. (2014). Melatonin: Plant growth regulator and/or biostimulator during stress? Trends in Plant Science, 19(12), 789–797. https://doi.org/10.1016/j.tplants.2014.07.006
  • Arnao, M. B., & Hernández-Ruiz, J. (2015). Functions of melatonin in plants: A review. Journal of Pineal Research, 59(2), 133– 150. https://doi.org/10.1111/jpi.12253
  • Aydin, M., Erdal, B., & Yilmaz, Z. (2021). Effects of different growth regulators on yield and quality parameters of soybean (Glycine max L.) under drought conditions. Turkish Journal of Field Crops, 26(2), 88–95.
  • Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M., & Nonogaki, H. (2013). Seeds: Physiology of development, germination and dormancy (3rd ed.). Springer.
  • Bouché, N., & Fromm, H. (2004). GABA in plants: Just a metabolite? Trends in Plant Science, 9(3), 110–115. https://doi.org/10.1016/j.tplants.2004.01.006
  • Cakmak, I., & Horst, W. (1991). Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tip of soybean (Glycine max). Journal of Plant Physiology, 83, 463–468.
  • Delijani, N. B., Moshki, A., Matinizadeh, M., Ravanbakhsh, H., & Nouri, E. (2022). The effects of fire and seasonal variations on soil properties in Juniperus excelsa M. Bieb. stands in the Alborz Mountains, Iran. Journal of Forestry Research, 33(5), 1471– 1479. https://doi.org/10.1016/j.plaphy.2019.10.028
  • Demir, S., Koc, N., & Bayraktar, E. (2023). Physiological and biochemical responses of maize genotypes to accelerated aging stress. Turkish Journal of Field Crops, 28(2), 134–141.
  • Dou, N., Zhang, H., & Wu, C. (2021). The versatile GABA in plants. Plant Signaling & Behavior, 16(3), 1862565. https://doi.org/10.1080/15592324.2020.1862565
  • Du, Z., & Bramley, W. J. (1992). Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. Journal of Agricultural and Food Chemistry, 40(9), 1566–1570.
  • Ebone, L. A., Caverzan, A., & Chavarria, G. (2019). Physiologic alterations in orthodox seeds due to deterioration processes. Plant Physiology and Biochemistry, 145, 34–42.
  • El-Sanatawy, A. M., Ash-Shormillesy, S. M., Qabil, N., Awad, M. F., & Mansour, E. (2021). Seed halo-priming improves seedling vigor, grain yield, and water use efficiency of maize under varying irrigation regimes. Water, 13(15), 2115. https://doi.org/10.3390/w13152115
  • Farouk, S., & Al-Amri, S. M. (2019). Ameliorative roles of melatonin and/or zeolite on chromium-induced leaf senescence in marjoram plants by activating antioxidant defense, osmolyte accumulation, and ultrastructural modification. Industrial Crops and Products, 142, 111823. https://doi.org/10.1016/j.indcrop.2019.111823
  • Gong, X. Q., Shi, S. T., Dou, F. F., Song, Y., & Ma, F. W. (2017). Exogenous melatonin alleviates alkaline stress in Malus hupehensis Rehd. by regulating the biosynthesis of polyamines. Molecules, 22, 1542. https://doi.org/10.3390/molecules22091542
  • Gould, K. S. (2004). Nature’s Swiss army knife: The diverse protective roles of anthocyanins in leaves. Journal of Biomedicine and Biotechnology, 2004(5), 314–320. https://doi.org/10.1155/S1110724304406147
  • Govindaraj, M., Masilamani, P., Alex Albert, V., & Bhaskaran, M. (2017). Role of antioxidants in seed quality: A review. Agricultural Reviews, 38(3), 180–190. https://doi.org/10.18805/ag.v38i03.8977
  • Hasan, M. K., Ahammed, G. J., Yin, L., Shi, K., Xia, X., & Zhou, Y. (2021). Melatonin mitigates salinity-induced photosynthetic inhibition and oxidative stress in tomato seedlings by enhancing antioxidant machinery and photosystem performance. Frontiers in Plant Science, 12, 634770. https://doi.org/10.3389/fpls.2021.634770
  • Hu, X., Xu, Z., Xu, W., Li, J., Zhao, N., & Zhou, Y. (2015). Application of γ-aminobutyric acid demonstrates a protective role of polyamine and GABA metabolism in muskmelon seedlings under Ca(NO₃)₂ stress. Plant Physiology and Biochemistry, 92, 1– 10. https://doi.org/10.1016/j.plaphy.2015.04.006
  • ISTA (International Seed Testing Association). (1999). International rules for seed testing. Seed Science and Technology, 27.
  • Janas, M. K., & Posmyk, M. M. (2013). Melatonin, an underestimated natural substance with great potential for agricultural application. Acta Physiologiae Plantarum, 35, 3285–3292. https://doi.org/10.1007/s11738-013-1350-2
  • Jiang, Y., Liang, D., Liao, M. A., & Lin, L. (2017). Effects of melatonin on the growth of radish seedlings under salt stress. In Proceedings of the 3rd International Conference on Renewable Energy and Environmental Technology (ICERE), Hanoi, Vietnam.
  • Kaya, M., Yıldırım, A., & Özdemir, H. (2022). Seed priming with salicylic acid improves drought tolerance during germination and early seedling growth in chickpea (Cicer arietinum L.). Turkish Journal of Field Crops, 27(1), 45–52.
  • Kramer, P. S. (1983). Water relation of plants. Academic Press, 342–415.
  • Krishnan, S., Laskowski, K., Shukla, V., & Merewitz, E. B. (2013). Mitigation of drought stress damage by exogenous application of a non-protein amino acid γ–aminobutyric acid on perennial ryegrass. Journal of the American Society for Horticultural Science, 138(5), 358–366. https://doi.org/10.21273/JASHS.138.5.358
  • Li, C., Wang, P., Wei, Z., Liang, D., Liu, C., Yin, L., Jia, D., Fu, M., & Ma, F. (2016). The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. Journal of Pineal Research, 60(3), 291–302. https://doi.org/10.1111/jpi.12307
  • Li, J., Liu, Y., & Zhang, M. (2022). Melatonin increases growth and salt tolerance of Limonium bicolor by improving photosynthetic and antioxidant capacity. BMC Plant Biology, 22, 16. https://doi.org/10.1186/s12870-021-03402-x
  • Li, W., Yoo, E., Lee, S., Sung, J., Noh, H. J., Hwang, S. J., Desta, K. T., & Lee, G. A. (2022). Seed weight and genotype influence the total oil content and fatty acid composition of peanut seeds. Foods, 11(21), 3463. https://doi.org/10.3390/foods11213463
  • Li, X., Dun-Xian, T., Dong, J., & Fulai, L. (2016). Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley. Journal of Pineal Research, 61, 328–339. https://doi.org/10.1111/jpi.12350
  • Liang, D., Shen, Y., Ni, Z., Wang, Q., Lei, Z., Xu, N., Deng, Q., Lin, L., Wang, J., Lv, X., & Xia, H. (2018). Exogenous melatonin application delays senescence of kiwifruit leaves by regulating the antioxidant capacity and biosynthesis of flavonoids. Frontiers in Plant Science, 9, 00426. https://doi.org/10.3389/fpls.2018.00426
  • Lin, Y., Chen, T., Liu, S., Cai, Y., Shi, H., Zheng, D., Lan, Y., Yue, X., & Zhang, L. (2022). Quick and accurate monitoring peanut seedlings emergence rate through UAV video and deep learning. Computers and Electronics in Agriculture, 197, 106938. https://doi.org/10.1016/j.compag.2022.106938
  • Malekzadeh, P., Khara, J., & Heydari, R. (2014). Alleviating effects of exogenous gamma-aminobutyric acid on tomato seedling under chilling stress. Physiology and Molecular Biology of Plants, 20, 133–137. https://doi.org/10.1007/s12298-013-0203-5
  • Matinizadeh, M., Nouri, E., Bayranvand, M., Kolarikova, Z., & Janoušková, M. (2024). Arbuscular mycorrhiza and rhizosphere soil enzymatic activities as modulated by grazing intensity and plant species identity in a semi-arid grassland. Rhizosphere, 30, 100893. https://doi.org/10.1016/j.rhisph.2024.100893
  • Mita, S., Murano, N., Akaike, M., & Nakamura, K. (1997). Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for beta amylase and on the accumulation of anthocyanin those are inducible by sugars. The Plant Journal, 11(4), 841–851. https://doi.org/10.1046/j.1365-313X.1997.11040841.x
  • Moshki, A., Nouri, E., & Matinizadeh, M. (2024). Soil bio-physicochemical properties changes in response to grazing intensity and seasonal variations in an arid rangeland ecosystem of Iran. Ecopersia, 12(3), 307–316. http://dx.doi.org/10.22034/ECOPERSIA.12.3.307
  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867–880.
  • Nejad-Alimoradi, F., Nasibi, F., & Kalantari, K. M. (2019). 24-epibrassinolide pre-treatment alleviates the salt-induced deleterious effects in medicinal pumpkin (Cucurbita pepo) by enhancement of GABA content and enzymatic antioxidants. South African Journal of Botany, 124, 111–117. https://doi.org/10.1016/j.sajb.2019.04.027
  • Ramalho, J. C., Rodrigues, A. P., Lidon, F. C., Marques, L. M., Leitao, A. E., Fortunato, A. S., ... & Ribeiro-Barros, A. I. (2018). Stress cross-response of the antioxidative system promoted by superimposed drought and cold conditions in Coffea spp. PLoS ONE, 13(6), e0198694. https://doi.org/10.1371/journal.pone.0198694
  • Ramos-Ruiz, R., Poirot, E., & Flores-Mosquera, M. (2018). GABA, a non-protein amino acid ubiquitous in food matrices. Cogent Food & Agriculture, 4(1), 1534323. https://doi.org/10.1080/23311932.2018.1534323
  • Rousta, M. J., Matinizadeh, M., Zarafshar, M., & Nouri, E. (2023). Spate irrigation slightly ameliorates an arid soil's quality, but tree planting enhances its characteristics. Soil and Tillage Research, 229, 105658. https://doi.org/10.1016/j.still.2023.105658
  • Sairam, R. K., Rao, K. V., & Srivastava, G. C. (2002). Differential response of wheat genotypes to long-term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163, 1037–1046. https://doi.org/10.1016/S0168-9452(02)00278-9
  • Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., & Zheng, B. (2019). Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 9, 285. https://doi.org/10.3390/biom9070285
  • Shelp, B. J., Bozzo, G. G., Trobacher, C. P., Zarei, A., Deyman, K. L., & Brikis, C. J. (2012). Hypothesis/review: Contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Science, 193, 130–135. https://doi.org/10.1016/j.plantsci.2012.06.001
  • Shi, S. Q., Shi, Z., Jiang, Z. P., Qi, L. W., Sun, X. M., & Li, C. X. (2010). Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: regulatory roles for H2O2 and ethylene production. Plant, Cell & Environment, 33(2), 149–162. https://doi.org/10.1111/j.1365-3040.2009.02065.x
  • Soleymani Aghdam, M., Razavi, F., & Kazemi, F. (2015). Maintaining the postharvest nutritional quality of peach fruits by γaminobutyric acid. International Journal of Plant Physiology and Biochemistry, 5, 1457–1463.
  • Steel, R. G. D., Torrie, J. H., & Dickey, D. A. (1997). Principles and procedures of statistics: A biometrical approach (3rd ed.). McGraw-Hill
  • Szafranska, K., Reiter, R. J., & Posmyk, M. M. (2016). Melatonin application to Pisum sativum L. seeds positively influences the function of the photosynthetic apparatus in growing seedlings during paraquat-induced oxidative stress. Frontiers in Plant Science, 7, 278. https://doi.org/10.3389/fpls.2016.00278
  • Tavakkol Afshari, R., & Seyyedi, S. M. (2020). Exogenous γ-aminobutyric acid can alleviate the adverse effects of seed aging on fatty acids composition and heterotrophic seedling growth in medicinal pumpkin. Industrial Crops and Products, 153, 112605. https://doi.org/10.1016/j.indcrop.2020.112605
  • Wang, C. Y., Fan, L. Q., Gao, H. B., Wu, X. L., Li, J. R., & Gong, B. B. (2014). Polyamine biosynthesis and degradation are modulated by exogenous gamma-aminobutyric acid in root-zone hypoxia-stressed melon roots. Journal of Plant Physiology and Biochemistry, 82, 17–26. https://doi.org/10.1016/j.plaphy.2014.04.018
  • Wang, R., Wu, F., Xie, X., & Yang, C. (2021). Quantitative trait locus mapping of seed vigor in soybean under –20°C storage and accelerated aging conditions via RAD sequencing. Molecular Biology Reports, 43, 1977–1996. https://doi.org/10.1007/s11033- 020-05483-y
  • Wei, W., Li, Q. T., Chu, Y. N., Reiter, R. J., Yu, X. M., Zhu, D. H., Zhang, W. K., Ma, B., Lin, Q., Zhang, J. S., & Chen, S. Y. (2015). Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany, 66(3), 695–707. https://doi.org/10.1093/jxb/eru392
  • Yan, H., Jia, S., & Mao, P. (2020). Melatonin priming alleviates aging-induced germination inhibition by regulating β-oxidation, protein translation, and antioxidant metabolism in oat (Avena sativa L.) seeds. International Journal of Molecular Sciences, 21, 1898. https://doi.org/10.3390/ijms21051898
  • Zhang, K., Zhang, Y., Sun, J., Meng, J., & Tao, J. (2021). Deterioration of orthodox seeds during ageing: Influencing factors, physiological alterations and the role of reactive oxygen species. Plant Physiology and Biochemistry, 158, 475–485. https://doi.org/10.1016/j.plaphy.2020.11.031
  • Zhang, N., Sun, Q., Zhang, H., Cao, Y., Weeda, S., Ren, S. H., & Guo, Y. D. (2015). Roles of melatonin in abiotic stress resistance in plants. Journal of Experimental Botany, 66, 647–656. https://doi.org/10.1093/jxb/eru336
  • Zhang, N., Zhao, B., Zhang, H. J., Weeda, S., Yang, C., Yang, Z. C., Ren, S., & Guo, Y. D. (2019). Melatonin promotes water‐ stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). Journal of Pineal Research, 72(2), e12580. https://doi.org/10.1111/jpi.12580
There are 55 citations in total.

Details

Primary Language English
Subjects Agronomy
Journal Section Articles
Authors

Nastaran Heydari Khoshkarvandani This is me 0009-0008-4382-8680

Mehdi Baradaran Firouzabadi 0000-0003-1703-8374

Masoud Esfahani This is me 0000-0003-2288-7944

Sanam Safaei This is me 0000-0002-1438-4290

Hasan Makarian This is me 0000-0003-0206-0907

Publication Date June 23, 2025
Submission Date July 13, 2024
Acceptance Date May 1, 2025
Published in Issue Year 2025 Volume: 30 Issue: 1

Cite

APA Heydari Khoshkarvandani, N., Baradaran Firouzabadi, M., Esfahani, M., … Safaei, S. (2025). Physiological and Agronomic Responses of Peanut (Arachis hypogaea L.) to Melatonin Seed Pretreatment and GammaAminobutyric Acid Foliar Application under Accelerated Aging. Turkish Journal Of Field Crops, 30(1), 175-191. https://doi.org/10.17557/tjfc.1515618

Turkish Journal of Field Crops is published by the Society of Field Crops Science and issued twice a year.
Owner : Prof. Dr. Behçet KIR
Ege University, Faculty of Agriculture,Department of Field Crops
Editor in Chief : Prof. Dr. Emre ILKER
Address : 848 sok. 2. Beyler İşhanı No:72, Kat:3 D.313 35000 Konak-Izmir, TURKEY
Email :  turkishjournaloffieldcrops@gmail.com contact@field-crops.org
Tel : +90 232 3112679
Tel/Fax : : +90 232 3432474