Research Article
BibTex RIS Cite
Year 2025, Volume: 7 Issue: 3, 98 - 108, 29.07.2025
https://doi.org/10.46310/tjim.1580929

Abstract

Project Number

2

References

  • Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48. doi: 10.3322/caac.21763.
  • Chaturvedi A, Khanna R, Kumar V. An analysis of region growing image segmentation schemes. Int J Comput Trends Technol. 2016;34:46–51. doi: 10.14445/22312803/IJCTT-V34P108.
  • Adams R, Bischof L. Seeded region growing. IEEE Trans Pattern Anal Mach Intell. 1994;16:641–7. doi: 10.1109/34.295913.
  • Mansoor A, Bagci U, Foster B, Xu Z, Papadakis GZ, Folio LR, et al. Segmentation and image analysis of abnormal lungs at CT: current approaches, challenges, and future trends. Radiographics. 2015;35:1056–76. doi: 10.1148/rg.2015140232.
  • Zhou SK, Greenspan H, Davatzikos C, Duncan JS, Van Ginneken B, Madabhushi A, et al. A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. Proc IEEE. 2021;109:820–38. doi: 10.1109/JPROC.2021.3054390.
  • Liu M, Dong J, Dong X, Yu H, Qi L. Segmentation of lung nodule in CT images based on Mask R-CNN. In: 2018 International Conference on Awareness Science and Technology (iCAST). 2018:1–6. doi: N/A.
  • Al-Yasriy HF, Jawad DK, Farhan IA, Salman OH. Diagnosis of lung cancer based on CT scans using CNN. IOP Conf Ser Mater Sci Eng. 2020;928:022035. doi: 10.1088/1757-899X/928/2/022035.
  • Mesanovic N, Grgic M, Huseinagic H, Males M, Skejic E, Smajlovic M. Automatic CT image segmentation of the lungs with region growing algorithm. In: 2011 18th International Conference on Systems, Signals and Image Processing (IWSSIP). 2011: pp. N/A. [Internet]. Available from: https://vcl.fer.hr
  • Sahoo PK, Mishra S, Panigrahi R, Bhoi AK, Barsocchi P. An improvised deep-learning-based Mask R-CNN model for laryngeal cancer detection using CT images. Sensors (Basel). 2022;22:8834. doi: 10.3390/s22228834.
  • Cifci MA. SegChaNet: a novel model for lung cancer segmentation in CT scans. Appl Bionics Biomech. 2022;2022:1139587. doi: 10.1155/2022/1139587.
  • Chen X, Duan Q, Wu R, Yang Z. Segmentation of lung computed tomography images based on SegNet in the diagnosis of lung cancer. J Radiat Res Appl Sci. 2021;14:396–403. doi: 10.1080/16878507.2021.1981753.
  • Naseer I, Akram S, Masood T, Rashid M, Jaffar A. Lung cancer classification using modified U-Net based lobe segmentation and nodule detection. IEEE Access. 2023;11:60279–91. doi: 10.1109/ACCESS.2023.3285821.
  • Kumar V, Altahan BR, Rasheed T, Singh P, Soni D, Alsaab HO, et al. Improved UNet deep learning model for automatic detection of lung cancer nodules. Comput Intell Neurosci. 2023;2023:9739264. doi: 10.1155/2023/9739264.
  • Kurt Z, Işık Ş, Kaya Z, Anagün Y, Koca N, Çiçek S. Evaluation of EfficientNet models for COVID-19 detection using lung parenchyma. Neural Comput Appl. 2023;35(16):12121–32. doi: 10.1007/s00521-023-08344-z.
  • Results [Internet]. [cited 2024 Nov 6]. Available from: http://medicaldecathlon.com/dataaws/
  • Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. Lect Notes Comput Sci. 2015;9351:234–41. doi: 10.1007/978-3-319-24574-4_28.

Region segmentation for lung cancer CT image using 3D U- Net model

Year 2025, Volume: 7 Issue: 3, 98 - 108, 29.07.2025
https://doi.org/10.46310/tjim.1580929

Abstract

Background Lung cancer detection through medical imaging is critical for early diagnosis and effective treatment planning. This study proposes a deep learning-based approach for automated lung segmentation in computed tomography (CT) scans, utilizing the Task06_Lung dataset from the Medical Segmentation Decathlon (MSD) Challenge.
Methods The dataset underwent preprocessing steps including resampling, normalization, and data augmentation to ensure consistency and diversity. Two U-Net-based architectures Simple U-Net and UNetM were implemented for segmentation. The models employed an encoder–decoder framework with skip connections to facilitate accurate feature extraction and reconstruction of lung regions. Training was performed using the Dice Loss function to address class imbalance, and a sliding window inference technique was applied to optimize memory usage during validation.
Results Performance evaluation was conducted using segmentation metrics and confusion matrix analysis. The best model achieved a Dice score of 0.67 at epoch 59. Additionally, the model demonstrated high classification performance, with a precision, recall, and F1-score of 0.99, indicating strong accuracy in segmenting lung regions. Visualizations comparing predicted segmentations with ground truth masks supported the model’s effectiveness, while the confusion matrix highlighted areas requiring further improvement.
Conclusion The proposed models showed strong performance in segmenting lung tissue in CT images. However, challenges remain in handling complex cancerous structures and fine anatomical boundaries. Future improvements may involve advanced data augmentation strategies and the integration of more sophisticated architectures, such as Attention U-Net, to enhance overall segmentation accuracy.

Project Number

2

Thanks

we thanks Eng.abdalwahab ahmed for his help

References

  • Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48. doi: 10.3322/caac.21763.
  • Chaturvedi A, Khanna R, Kumar V. An analysis of region growing image segmentation schemes. Int J Comput Trends Technol. 2016;34:46–51. doi: 10.14445/22312803/IJCTT-V34P108.
  • Adams R, Bischof L. Seeded region growing. IEEE Trans Pattern Anal Mach Intell. 1994;16:641–7. doi: 10.1109/34.295913.
  • Mansoor A, Bagci U, Foster B, Xu Z, Papadakis GZ, Folio LR, et al. Segmentation and image analysis of abnormal lungs at CT: current approaches, challenges, and future trends. Radiographics. 2015;35:1056–76. doi: 10.1148/rg.2015140232.
  • Zhou SK, Greenspan H, Davatzikos C, Duncan JS, Van Ginneken B, Madabhushi A, et al. A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. Proc IEEE. 2021;109:820–38. doi: 10.1109/JPROC.2021.3054390.
  • Liu M, Dong J, Dong X, Yu H, Qi L. Segmentation of lung nodule in CT images based on Mask R-CNN. In: 2018 International Conference on Awareness Science and Technology (iCAST). 2018:1–6. doi: N/A.
  • Al-Yasriy HF, Jawad DK, Farhan IA, Salman OH. Diagnosis of lung cancer based on CT scans using CNN. IOP Conf Ser Mater Sci Eng. 2020;928:022035. doi: 10.1088/1757-899X/928/2/022035.
  • Mesanovic N, Grgic M, Huseinagic H, Males M, Skejic E, Smajlovic M. Automatic CT image segmentation of the lungs with region growing algorithm. In: 2011 18th International Conference on Systems, Signals and Image Processing (IWSSIP). 2011: pp. N/A. [Internet]. Available from: https://vcl.fer.hr
  • Sahoo PK, Mishra S, Panigrahi R, Bhoi AK, Barsocchi P. An improvised deep-learning-based Mask R-CNN model for laryngeal cancer detection using CT images. Sensors (Basel). 2022;22:8834. doi: 10.3390/s22228834.
  • Cifci MA. SegChaNet: a novel model for lung cancer segmentation in CT scans. Appl Bionics Biomech. 2022;2022:1139587. doi: 10.1155/2022/1139587.
  • Chen X, Duan Q, Wu R, Yang Z. Segmentation of lung computed tomography images based on SegNet in the diagnosis of lung cancer. J Radiat Res Appl Sci. 2021;14:396–403. doi: 10.1080/16878507.2021.1981753.
  • Naseer I, Akram S, Masood T, Rashid M, Jaffar A. Lung cancer classification using modified U-Net based lobe segmentation and nodule detection. IEEE Access. 2023;11:60279–91. doi: 10.1109/ACCESS.2023.3285821.
  • Kumar V, Altahan BR, Rasheed T, Singh P, Soni D, Alsaab HO, et al. Improved UNet deep learning model for automatic detection of lung cancer nodules. Comput Intell Neurosci. 2023;2023:9739264. doi: 10.1155/2023/9739264.
  • Kurt Z, Işık Ş, Kaya Z, Anagün Y, Koca N, Çiçek S. Evaluation of EfficientNet models for COVID-19 detection using lung parenchyma. Neural Comput Appl. 2023;35(16):12121–32. doi: 10.1007/s00521-023-08344-z.
  • Results [Internet]. [cited 2024 Nov 6]. Available from: http://medicaldecathlon.com/dataaws/
  • Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. Lect Notes Comput Sci. 2015;9351:234–41. doi: 10.1007/978-3-319-24574-4_28.
There are 16 citations in total.

Details

Primary Language English
Subjects Chest Diseases, Medical Genetics (Excl. Cancer Genetics)
Journal Section Original Articles
Authors

Sara Ali 0009-0000-7626-3518

Nosiba Ali 0009-0004-0324-3937

Fatima Mohamed 0009-0003-3889-6869

Tamni Kamal 0009-0008-8422-0698

Musab Salih This is me 0000-0002-6955-3944

Project Number 2
Publication Date July 29, 2025
Submission Date November 14, 2024
Acceptance Date July 16, 2025
Published in Issue Year 2025 Volume: 7 Issue: 3

Cite

EndNote Ali S, Ali N, Mohamed F, Kamal T, Salih M (July 1, 2025) Region segmentation for lung cancer CT image using 3D U- Net model. Turkish Journal of Internal Medicine 7 3 98–108.

e-ISSN: 2687-4245 

Turkish Journal of Internal Medicine, hosted by Turkish JournalPark ACADEMIC, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

by-nc-nd.png
2025 -TJIM.org