BibTex RIS Cite

Indole Acetic Acid Production by Rhizobium sp. Isolated from Pea (Pisum sativum L. ssp. arvense)

Year 2016, Volume: 1 Issue: 1, 43 - 45, 30.06.2016

Abstract

In this study, isolates of the genus Rhizobium were isolated from root nodules of peas (Pisum sativum L. ssp. arvense) which were taken from pasture of Şanlıurfa, Turkey. Indole acetic acid (IAA) production by Rhizobium sp. was determined and IAA production of tested isolates ranged from 20.4 to 165.6 mg/ml. The highest IAA production and specific activity was found in isolate P2. Maximum IAA production for P2 isolate was obtained 96 h of inculbation time. IAA production by P2 isolate was determined in the media containing different carbon and nitrogen sources. Sucrose and glycine as carbon and nitrogen source, respectively gave the best result for P2 isolate.

References

  • Açıkgöz E. 1991. Yembitkileri. Uludağ Üniv. Yay. No:7-025-0210
  • Avcıoğlu R, Hatipoğlu R, Karadağ Y. 2009. Yem bitkileri T.C. Tarım ve Köyişleri Bak. Tarımsal Üretim ve Geliştirme Genel Müd, İzmir, p. 545.
  • Bhattacharya RN, Basu PS. 1992. Bioproduction of indole acetic acid by a Rhizobium sp. from root nodules of leguminous climber, Psophocarpus tetragonolobus DC. Ind J Exp Biol, 30, 632-635.
  • Datta C, Basu PS. 1998. Production of indole acetic acid in root nodules and culture by a Rhizobium species from root nodules of the fodder legume Melilotus alba DESR. Acta Biotechnol, 18,53-62.
  • Dullaart J. 1970. The bioproduction of indole-3-acetic acid and related compounds in root nodules and roots of Lupinus luteus and by its microbial symbiont. Acta Bot Neerl, 19, 573-615.
  • Fukuhara H, Minakawa Y, Akao S, Minamisawa K. 1994. The involvement of indole-3-acetic acid produced by Bradyrhizobium elkanii in nodule formation. Plant Cell Physiol, 35, 1261-1265.
  • Ghosh PK, De TK, Maiti TK. 2015. Production and Metabolism of Indole Acetic Acid in Root Nodules and Symbiont (Rhizobium undicola) Isolated from Root Nodule of Aquatic Medicinal Legume Neptunia oleracea Lour. Journal of Botany, 1, 1-11.
  • Ghosh S, Basu PS. 2006. Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo. Microbiol Res, 161, 362-366.
  • Gordon SA, Weber RP. 1951. Colorimetric estimation of indole acetic acid. Plant Physiol, 26, 192-195.
  • Hansen AP. 1994. Symbiotic N2 fixation of crop legumes: achievement and perspectives, Hohenheim Tropical Agricultural Series. Margraf Verlag, pp. 31-36.
  • Kumar PP, Ram MR. 2012. Production of indole acetic acid by Rhizobium isolates from Vigna trilobata (L) Verdc. Afr J Microbiol Res, 6, 5536-5541.
  • Leveau JH, Lindow SE. 2005. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol, 71, 2365-2371.
  • Mandal SM, Mondal RC, Dey S, Pati BR. 2007. Optimization of cultural and nutritional conditions for indole-3-acetic acid (IAA) production by a Rhizobium sp. isolated from root nodules of Vigna mungo (L.) Hepper. Res. J Microbiol, 2, 239-246.
  • Mohite B. 2013. Isolation and characterization of indole acetic acid (IAA) producting bacteria from rhizospheric soil and its effect on plant growth. J.Soil Sci. Plant Nutr, 13, 638-649.
  • Patten CL, Glick BR. 1996. Bacterial biosynthesis of indole 3-acetic acid. Can J Microbiol, 42, 207-220.
  • Spepen S, Vanderleyden J. 2011. Auxin and plant microbe interactions. Cold Spring Harb Perspect Biol, 3, 1-3.
  • Verma P, Chandra A, Roy AK, Malaviya DR, Kaushal P, Pandey D, Bhatia S. 2015. Development, characterization and cross species transferability of genomic SSR markers in berseem (Trifolium alexandrinum L.), an important multi-cut annual forage legume. Mol Breeding, 35, 1-4.
  • Vincent JM. 1970. A Manual for the Practical Study of the Root Nodule Bacteria. Blackwell Scientific Publications, Oxford. pp.7-9,
  • Zahran HH. 1997. Diversity, adaptation and activity of the bacterial flora in saline environments. Biology and Fertility Soils, 25, 211-223.

Bezelye (Pisum sativum L. ssp. arvense)’den İzole Edilen Rhizobium sp. Tarafından İndol Asetik Asit Üretimi

Year 2016, Volume: 1 Issue: 1, 43 - 45, 30.06.2016

Abstract

Bu çalışmada, Rhizobium cinsine ait izolatlar Türkiye, Şanlıurfa meralarından toplanan bezelyelerin (Pisum sativum L. ssp. arvense) kök nodüllerinden izole edilmiştir. Rhizobium sp. tarafından indol asetik asit (IAA) üretimi belirlenmiş ve test edilen izolatların IAA üretimi; 20.4-165.6 mg/ml arasında değişmiştir. En yüksek IAA üretimi ve spesifik aktivite P2 izolatında bulunmuştur. P2 izolatı için maksimum IAA üretimi inkübasyonun 96. saatinde incelenmiştir. P2 izolatı tarafından IAA üretimi farklı karbon ve azot kaynaklarının bulunduğu ortamlarda belirlenmiştir. Karbon ve azot kaynakları olarak sırasıyla; sukroz ve glisin, P2 izolatı için en iyi sonucu vermiştir.

References

  • Açıkgöz E. 1991. Yembitkileri. Uludağ Üniv. Yay. No:7-025-0210
  • Avcıoğlu R, Hatipoğlu R, Karadağ Y. 2009. Yem bitkileri T.C. Tarım ve Köyişleri Bak. Tarımsal Üretim ve Geliştirme Genel Müd, İzmir, p. 545.
  • Bhattacharya RN, Basu PS. 1992. Bioproduction of indole acetic acid by a Rhizobium sp. from root nodules of leguminous climber, Psophocarpus tetragonolobus DC. Ind J Exp Biol, 30, 632-635.
  • Datta C, Basu PS. 1998. Production of indole acetic acid in root nodules and culture by a Rhizobium species from root nodules of the fodder legume Melilotus alba DESR. Acta Biotechnol, 18,53-62.
  • Dullaart J. 1970. The bioproduction of indole-3-acetic acid and related compounds in root nodules and roots of Lupinus luteus and by its microbial symbiont. Acta Bot Neerl, 19, 573-615.
  • Fukuhara H, Minakawa Y, Akao S, Minamisawa K. 1994. The involvement of indole-3-acetic acid produced by Bradyrhizobium elkanii in nodule formation. Plant Cell Physiol, 35, 1261-1265.
  • Ghosh PK, De TK, Maiti TK. 2015. Production and Metabolism of Indole Acetic Acid in Root Nodules and Symbiont (Rhizobium undicola) Isolated from Root Nodule of Aquatic Medicinal Legume Neptunia oleracea Lour. Journal of Botany, 1, 1-11.
  • Ghosh S, Basu PS. 2006. Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo. Microbiol Res, 161, 362-366.
  • Gordon SA, Weber RP. 1951. Colorimetric estimation of indole acetic acid. Plant Physiol, 26, 192-195.
  • Hansen AP. 1994. Symbiotic N2 fixation of crop legumes: achievement and perspectives, Hohenheim Tropical Agricultural Series. Margraf Verlag, pp. 31-36.
  • Kumar PP, Ram MR. 2012. Production of indole acetic acid by Rhizobium isolates from Vigna trilobata (L) Verdc. Afr J Microbiol Res, 6, 5536-5541.
  • Leveau JH, Lindow SE. 2005. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol, 71, 2365-2371.
  • Mandal SM, Mondal RC, Dey S, Pati BR. 2007. Optimization of cultural and nutritional conditions for indole-3-acetic acid (IAA) production by a Rhizobium sp. isolated from root nodules of Vigna mungo (L.) Hepper. Res. J Microbiol, 2, 239-246.
  • Mohite B. 2013. Isolation and characterization of indole acetic acid (IAA) producting bacteria from rhizospheric soil and its effect on plant growth. J.Soil Sci. Plant Nutr, 13, 638-649.
  • Patten CL, Glick BR. 1996. Bacterial biosynthesis of indole 3-acetic acid. Can J Microbiol, 42, 207-220.
  • Spepen S, Vanderleyden J. 2011. Auxin and plant microbe interactions. Cold Spring Harb Perspect Biol, 3, 1-3.
  • Verma P, Chandra A, Roy AK, Malaviya DR, Kaushal P, Pandey D, Bhatia S. 2015. Development, characterization and cross species transferability of genomic SSR markers in berseem (Trifolium alexandrinum L.), an important multi-cut annual forage legume. Mol Breeding, 35, 1-4.
  • Vincent JM. 1970. A Manual for the Practical Study of the Root Nodule Bacteria. Blackwell Scientific Publications, Oxford. pp.7-9,
  • Zahran HH. 1997. Diversity, adaptation and activity of the bacterial flora in saline environments. Biology and Fertility Soils, 25, 211-223.
There are 19 citations in total.

Details

Journal Section 2016-Articles
Authors

Çiğdem Küçük

Cenap Cevheri

Publication Date June 30, 2016
Acceptance Date April 27, 2016
Published in Issue Year 2016 Volume: 1 Issue: 1

Cite

APA Küçük, Ç., & Cevheri, C. (2016). Indole Acetic Acid Production by Rhizobium sp. Isolated from Pea (Pisum sativum L. ssp. arvense). Turkish Journal of Life Sciences, 1(1), 43-45.
AMA Küçük Ç, Cevheri C. Indole Acetic Acid Production by Rhizobium sp. Isolated from Pea (Pisum sativum L. ssp. arvense). TJLS. June 2016;1(1):43-45.
Chicago Küçük, Çiğdem, and Cenap Cevheri. “Indole Acetic Acid Production by Rhizobium Sp. Isolated from Pea (Pisum Sativum L. Ssp. Arvense)”. Turkish Journal of Life Sciences 1, no. 1 (June 2016): 43-45.
EndNote Küçük Ç, Cevheri C (June 1, 2016) Indole Acetic Acid Production by Rhizobium sp. Isolated from Pea (Pisum sativum L. ssp. arvense). Turkish Journal of Life Sciences 1 1 43–45.
IEEE Ç. Küçük and C. Cevheri, “Indole Acetic Acid Production by Rhizobium sp. Isolated from Pea (Pisum sativum L. ssp. arvense)”, TJLS, vol. 1, no. 1, pp. 43–45, 2016.
ISNAD Küçük, Çiğdem - Cevheri, Cenap. “Indole Acetic Acid Production by Rhizobium Sp. Isolated from Pea (Pisum Sativum L. Ssp. Arvense)”. Turkish Journal of Life Sciences 1/1 (June 2016), 43-45.
JAMA Küçük Ç, Cevheri C. Indole Acetic Acid Production by Rhizobium sp. Isolated from Pea (Pisum sativum L. ssp. arvense). TJLS. 2016;1:43–45.
MLA Küçük, Çiğdem and Cenap Cevheri. “Indole Acetic Acid Production by Rhizobium Sp. Isolated from Pea (Pisum Sativum L. Ssp. Arvense)”. Turkish Journal of Life Sciences, vol. 1, no. 1, 2016, pp. 43-45.
Vancouver Küçük Ç, Cevheri C. Indole Acetic Acid Production by Rhizobium sp. Isolated from Pea (Pisum sativum L. ssp. arvense). TJLS. 2016;1(1):43-5.