The singularity structure of a second-order ordinary differential equation with polynomial coefficients often yields the type of solution. It is shown that the $\theta$-operator method can be used as a symbolic computational approach to obtain the indicial equation and the recurrence relation. Consequently, the singularity structure leads to the transformations that yield a solution in terms of a special function, if the equation is suitable. Hypergeometric and Heun-type equations are mostly employed in physical applications. Thus, only these equations and their confluent types are considered with SageMath routines which are assembled in the open-source package symODE2.
Allen, G., Some efficient methods for obtaining infinite series solutions of nth-order linear ordinary differential equations, NASA Technical Report (NASA TR-R-390), 1972.
Birkandan, T., Cvetiˇc, M., Conformal invariance and near-extreme rotating AdS black holes, Phys. Rev. D, 84(2011), 044018. [arXiv:1106.4329 [hep-th]].
Birkandan, T., Cvetiˇc, M., Addentum to: Conformal invariance and near-extreme rotating AdS black holes, Phys. Rev. D, 90(6)(2014), 067504. [arXiv:1406.5208 [hep-th]].
Birkandan, T.,Cvetiˇc, M., An analysis of the wave equation for the U(1)2 gauged supergravity black hole, Class. Quant. Grav., 32(8)(2015), 085007. [arXiv:1501.03144 [hep-th]].
Birkandan, T., Hortacsu, M., Dirac equation in the background of the Nutku helicoid metric, J. Math. Phys., 48(2007), 092301. [arXiv:0706.2543 [gr-qc]].
Birkandan, T., Hortacsu, M., Examples of Heun and Mathieu functions as solutions of wave equations in curved spaces, J. Phys. A, 40(2007), 1105–1116. [arXiv:gr-qc/0607108 [gr-qc]].
Birkandan, T., G¨uzelg¨un, C., S¸ irin, E., Uslu, M.C., Symbolic and numerical analysis in general relativity with open source computer algebrasystems, Gen. Rel. Grav., 51(1)(2019), 4. [arXiv:1703.09738 [gr-qc]].
Birkandan, T., Giscard, P.L., Tamar, A., Computations of general Heun functions from their integral series representations, IEEE XPlore, Proceedings of the International Conference Days on Diffraction 2021(2021), 12—18. [arXiv: 2106.13729 [math.NA]].
Birkandan, T., The symODE2 package, Accessed 12 June 2022, https://github.com/tbirkandan/symODE2
Bronstein, M., Lafaille, S., Solutions of linear ordinary differential equations in terms of special functions, Proceedings of the 2002 InternationalSymposium on Symbolic and algebraic computation(2002), 23.
Chan, L., Cheb-Terrab, E.S., Non-liouvillian solutions for second order Linear ODEs, Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation(2004), 80. [arXiv:math-ph/0402063].
Cunha, M. S., Christiansen, H.R., Confluent Heun functions in gauge theories on thick braneworlds, Phys. Rev. D 84(2011), 085002. [arXiv:1109.3486 [hep-th]].
Debeerst, R., van Hoeij, M., Koepf,W., Solving differential equations in terms of Bessel functions, Proceedings of the Twenty-first International Symposium on Symbolic and Algebraic Computation, (2008), 39.
Derezinski, J., Hypergeometric type functions and their symmetries, Ann. Henri Poincare, 15(2014), 1569. [arXiv:1305.3113 [math.CA]].
Dong, Q., Sun, G.H., Aoki, M.A., Chen, C.Y., Dong, S.H., Exact solutions of a quartic potential, Mod. Phys. Lett. A 34(26)(2019), 1950208.
Duval, A., Loday-Richaud, M., Kovacic’s algorithm and its application to some families of special functions, AAECC, 3(1992), 211.
Fiziev, P.P., Exact solutions of Regge-Wheeler equation and quasi-normal modes of compact objects, Class. Quant. Grav., 23(2006), 2447-2468. [arXiv:gr-qc/0509123 [gr-qc]].
Giscard, P.L.,Tamar, A., Elementary integral series for Heun functions: Application to black-hole perturbation theory, J. Math. Phys., 63(2022), 063501. [arXiv:2010.03919 [math-ph]].
GNU Octave Version 5.2.0, Scientific Programming Language, https://www.gnu.org/software/octave/, 2020.
Grabmeier, J., Kaltofen, E., Weispfennig, U. (eds.), Computer Algebra Handbook, Springer, Berlin, 2003.
Gourgoulhon, E., Bejger, M., Mancini, M., Tensor calculus with open-source software: the SageManifolds project, J. Phys. Conf. Ser., 600(2015), 012002. [arXiv:1412.4765 [gr-qc]].
Gourgoulhon, E., Mancini, M., Symbolic tensor calculus on manifolds: a SageMath implementation, Les cours du CIRM, 6(2018), I. [arXiv:1804.07346 [gr-qc]].
“HeunG”, Accessed 12 June 2022, https://reference.wolfram.com/language/ref/HeunG.html.
“HeunB”, Accessed 12 June 2022, https://reference.wolfram.com/language/ref/HeunB.html.
“HeunT”, Accessed 12 June 2022, https://reference.wolfram.com/language/ref/HeunT.html.
“Heun and Related Functions”, Accessed 12 June 2022, https://reference.wolfram.com/language/guide/HeunAndRelatedFunctions.html
Hortacsu, M., Explicit examples on conformal invariance, Int. J. Theor. Phys. 42(2003), 49. [arXiv:hep-th/0106080 [hep-th]].
Hortacsu, M., Heun functions and some of their applications in physics, Advances in High Energy Physics, 2018(2018), 8621573. [arXiv:1101.0471 [math-ph]].
“Hypergeometric2F1”, Accessed 12 June 2022, https://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/13/01/01/01/.
“HypergeometricU”, Accessed 12 June 2022, https://reference.wolfram.com/language/ref/HypergeometricU.html.
Imamoglu, E.,van Hoeij, M., Computing hypergeometric solutions of second order linear differential equations using quotients of formal solutions and integral bases, J. Symbolic Computation, 83(2017), 254. [arXiv:1606.01576 [cs.SC]].
Ishkhanyan, T., From Sine to Heun: 5 New Functions for Mathematics and Physics in the Wolfram Language, Accessed 12 June 2022, https://blog.wolfram.com/2020/05/06/from-sine-to-heun-5-new-functions-for-mathematics-and-physics-in-the-wolfram-language/
Karayer, H., Demirhan, D., Büyükkılıç, F., Extension of Nikiforov-Uvarov method for the solution of Heun equation, J. Math. Phys., 56(2015), 063504. [arXiv:1504.03518 [math-ph]].
Karayer, H., Demirhan, D., Exact analytical solution of Schrodinger equation for a generalized noncentral potential, Eur. Phys. J. Plus 137(2022), 527.
Karayer, H., Demirhan, D., Atman K.G., Analytical exact solutions for the Razavy type potential, Mathematical Methods in the Applied Sciences, 43(15)(2020), 9185–9194.
Kovacic, J.J., An algorithm for solving second order linear homogeneous differential equations, J. Symbolic Computation, 2(1986), 3.
Kristensson, G., Second Order Differential Equations: Special Functions and Their Classification, Springer, New York, 2010.
Kunwar, V., van Hoeij, M., Second order differential equations with hypergeometric solutions of degree three, Proceedings of the Twenty-first International Symposium on Symbolic and Algebraic Computation, (2008), 235.
MacCallum, M.A.H., Computer algebra in gravity research, Living Rev. Rel., 21(1)(2018), 6.
Maier, R.S., On reducing the Heun equation to the hypergeometric equation, J. Differential Equations, 213(2005), 171. [arXiv:math/0203264 [math.CA]].
Maier, R.S., The 192 solutions of the Heun equation, Math. Comp., 76(2007), 811. [arXiv:math/0408317 [math.CA]].
Maple 2020, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario, 2020.
Mathematica Version 12.1, Wolfram Research, Inc., Champaign, IL, 2020.
Maxima, a Computer Algebra System, Version 5.44.0, http://maxima.sourceforge.net/, 2020.
Motygin, O.V., On numerical evaluation of the Heun functions, IEEE XPlore, Proceedings of the International Conference Days on Diffraction 2015, (2015), 222. [arXiv:1506.03848 [math.NA]].
Motygin, O.V., On evaluation of the confluent Heun functions, IEEE XPlore, Proceedings of the International Conference Days on Diffraction 2018, (2018), 223. [arXiv:1804.01007 [math.NA]].
Nasheeha, R.N., Thirukkanesh, S., Ragel, F.C., Anisotropic generalization of isotropic models via hypergeometric equation, Eur. Phys. J. C, 80(1)(2020), 6.
Olver, F.W.J., Asymptotics and Special Functions, Academic Press, New York, 1974.
Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F. et all. (eds.), NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.0.27, 2020.
Petroff, D., Slowly rotating homogeneous stars and the Heun equation, Class. Quant. Grav., 24(2007), 1055-1068. [arXiv:gr-qc/0701081 [grqc]].
REDUCE, a portable general-purpose computer algebra system, https://reduce-algebra.sourceforge.io/, 2020.
Ronveaux, A. (ed.), Heun’s Differential Equations, Oxford University Press, New York, 1995.
SageMath, The Sage Mathematics Software System (Version 9.2), The Sage Developers, https://www.sagemath.org, 2020.
Sakallı, İ., Jusufi, K., Övgün, A., Analytical solutions in a cosmic string born-infeld-dilaton black hole geometry: Quasinormal modes and quantization, Gen. Rel. Grav., 50(10)(2018), 125. [arXiv:1803.10583 [gr-qc]].
Slavyanov, S.Yu., Lay, W., Special Functions, A Unified Theory Based on Singularities, Oxford University Press, New York, 2000.
“Solving Some Second Order Linear ODEs that Admit Hypergeometric 2F1, 1F1, and 0F1 Function Solutions”, Accessed 12 June 2022, https://www.maplesoft.com/support/help/Maple/view.aspx?path=dsolve/hyper3.
“The five Second Order Linear Heun equations and the corresponding Heun function solutions”, Accessed 12 June 2022, https://www.maplesoft.com/support/help/Maple/view.aspx?path=Heun.
Vieira, H.S., Resonant frequencies of the hydrodynamic vortex, Int. J. Mod. Phys. D 26, no.04(2016), 1750035. [arXiv:1510.08298 [gr-qc]].
Vit´oria, R.L.L., Furtado, C. and Bakke, K., On a relativistic particle and a relativistic position-dependent mass particle subject to the Klein–Gordon oscillator and the Coulomb potential, Annals Phys. 370(2016), 128-136. [arXiv:1511.05072 [quant-ph]].
Allen, G., Some efficient methods for obtaining infinite series solutions of nth-order linear ordinary differential equations, NASA Technical Report (NASA TR-R-390), 1972.
Birkandan, T., Cvetiˇc, M., Conformal invariance and near-extreme rotating AdS black holes, Phys. Rev. D, 84(2011), 044018. [arXiv:1106.4329 [hep-th]].
Birkandan, T., Cvetiˇc, M., Addentum to: Conformal invariance and near-extreme rotating AdS black holes, Phys. Rev. D, 90(6)(2014), 067504. [arXiv:1406.5208 [hep-th]].
Birkandan, T.,Cvetiˇc, M., An analysis of the wave equation for the U(1)2 gauged supergravity black hole, Class. Quant. Grav., 32(8)(2015), 085007. [arXiv:1501.03144 [hep-th]].
Birkandan, T., Hortacsu, M., Dirac equation in the background of the Nutku helicoid metric, J. Math. Phys., 48(2007), 092301. [arXiv:0706.2543 [gr-qc]].
Birkandan, T., Hortacsu, M., Examples of Heun and Mathieu functions as solutions of wave equations in curved spaces, J. Phys. A, 40(2007), 1105–1116. [arXiv:gr-qc/0607108 [gr-qc]].
Birkandan, T., G¨uzelg¨un, C., S¸ irin, E., Uslu, M.C., Symbolic and numerical analysis in general relativity with open source computer algebrasystems, Gen. Rel. Grav., 51(1)(2019), 4. [arXiv:1703.09738 [gr-qc]].
Birkandan, T., Giscard, P.L., Tamar, A., Computations of general Heun functions from their integral series representations, IEEE XPlore, Proceedings of the International Conference Days on Diffraction 2021(2021), 12—18. [arXiv: 2106.13729 [math.NA]].
Birkandan, T., The symODE2 package, Accessed 12 June 2022, https://github.com/tbirkandan/symODE2
Bronstein, M., Lafaille, S., Solutions of linear ordinary differential equations in terms of special functions, Proceedings of the 2002 InternationalSymposium on Symbolic and algebraic computation(2002), 23.
Chan, L., Cheb-Terrab, E.S., Non-liouvillian solutions for second order Linear ODEs, Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation(2004), 80. [arXiv:math-ph/0402063].
Cunha, M. S., Christiansen, H.R., Confluent Heun functions in gauge theories on thick braneworlds, Phys. Rev. D 84(2011), 085002. [arXiv:1109.3486 [hep-th]].
Debeerst, R., van Hoeij, M., Koepf,W., Solving differential equations in terms of Bessel functions, Proceedings of the Twenty-first International Symposium on Symbolic and Algebraic Computation, (2008), 39.
Derezinski, J., Hypergeometric type functions and their symmetries, Ann. Henri Poincare, 15(2014), 1569. [arXiv:1305.3113 [math.CA]].
Dong, Q., Sun, G.H., Aoki, M.A., Chen, C.Y., Dong, S.H., Exact solutions of a quartic potential, Mod. Phys. Lett. A 34(26)(2019), 1950208.
Duval, A., Loday-Richaud, M., Kovacic’s algorithm and its application to some families of special functions, AAECC, 3(1992), 211.
Fiziev, P.P., Exact solutions of Regge-Wheeler equation and quasi-normal modes of compact objects, Class. Quant. Grav., 23(2006), 2447-2468. [arXiv:gr-qc/0509123 [gr-qc]].
Giscard, P.L.,Tamar, A., Elementary integral series for Heun functions: Application to black-hole perturbation theory, J. Math. Phys., 63(2022), 063501. [arXiv:2010.03919 [math-ph]].
GNU Octave Version 5.2.0, Scientific Programming Language, https://www.gnu.org/software/octave/, 2020.
Grabmeier, J., Kaltofen, E., Weispfennig, U. (eds.), Computer Algebra Handbook, Springer, Berlin, 2003.
Gourgoulhon, E., Bejger, M., Mancini, M., Tensor calculus with open-source software: the SageManifolds project, J. Phys. Conf. Ser., 600(2015), 012002. [arXiv:1412.4765 [gr-qc]].
Gourgoulhon, E., Mancini, M., Symbolic tensor calculus on manifolds: a SageMath implementation, Les cours du CIRM, 6(2018), I. [arXiv:1804.07346 [gr-qc]].
“HeunG”, Accessed 12 June 2022, https://reference.wolfram.com/language/ref/HeunG.html.
“HeunB”, Accessed 12 June 2022, https://reference.wolfram.com/language/ref/HeunB.html.
“HeunT”, Accessed 12 June 2022, https://reference.wolfram.com/language/ref/HeunT.html.
“Heun and Related Functions”, Accessed 12 June 2022, https://reference.wolfram.com/language/guide/HeunAndRelatedFunctions.html
Hortacsu, M., Explicit examples on conformal invariance, Int. J. Theor. Phys. 42(2003), 49. [arXiv:hep-th/0106080 [hep-th]].
Hortacsu, M., Heun functions and some of their applications in physics, Advances in High Energy Physics, 2018(2018), 8621573. [arXiv:1101.0471 [math-ph]].
“Hypergeometric2F1”, Accessed 12 June 2022, https://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/13/01/01/01/.
“HypergeometricU”, Accessed 12 June 2022, https://reference.wolfram.com/language/ref/HypergeometricU.html.
Imamoglu, E.,van Hoeij, M., Computing hypergeometric solutions of second order linear differential equations using quotients of formal solutions and integral bases, J. Symbolic Computation, 83(2017), 254. [arXiv:1606.01576 [cs.SC]].
Ishkhanyan, T., From Sine to Heun: 5 New Functions for Mathematics and Physics in the Wolfram Language, Accessed 12 June 2022, https://blog.wolfram.com/2020/05/06/from-sine-to-heun-5-new-functions-for-mathematics-and-physics-in-the-wolfram-language/
Karayer, H., Demirhan, D., Büyükkılıç, F., Extension of Nikiforov-Uvarov method for the solution of Heun equation, J. Math. Phys., 56(2015), 063504. [arXiv:1504.03518 [math-ph]].
Karayer, H., Demirhan, D., Exact analytical solution of Schrodinger equation for a generalized noncentral potential, Eur. Phys. J. Plus 137(2022), 527.
Karayer, H., Demirhan, D., Atman K.G., Analytical exact solutions for the Razavy type potential, Mathematical Methods in the Applied Sciences, 43(15)(2020), 9185–9194.
Kovacic, J.J., An algorithm for solving second order linear homogeneous differential equations, J. Symbolic Computation, 2(1986), 3.
Kristensson, G., Second Order Differential Equations: Special Functions and Their Classification, Springer, New York, 2010.
Kunwar, V., van Hoeij, M., Second order differential equations with hypergeometric solutions of degree three, Proceedings of the Twenty-first International Symposium on Symbolic and Algebraic Computation, (2008), 235.
MacCallum, M.A.H., Computer algebra in gravity research, Living Rev. Rel., 21(1)(2018), 6.
Maier, R.S., On reducing the Heun equation to the hypergeometric equation, J. Differential Equations, 213(2005), 171. [arXiv:math/0203264 [math.CA]].
Maier, R.S., The 192 solutions of the Heun equation, Math. Comp., 76(2007), 811. [arXiv:math/0408317 [math.CA]].
Maple 2020, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario, 2020.
Mathematica Version 12.1, Wolfram Research, Inc., Champaign, IL, 2020.
Maxima, a Computer Algebra System, Version 5.44.0, http://maxima.sourceforge.net/, 2020.
Motygin, O.V., On numerical evaluation of the Heun functions, IEEE XPlore, Proceedings of the International Conference Days on Diffraction 2015, (2015), 222. [arXiv:1506.03848 [math.NA]].
Motygin, O.V., On evaluation of the confluent Heun functions, IEEE XPlore, Proceedings of the International Conference Days on Diffraction 2018, (2018), 223. [arXiv:1804.01007 [math.NA]].
Nasheeha, R.N., Thirukkanesh, S., Ragel, F.C., Anisotropic generalization of isotropic models via hypergeometric equation, Eur. Phys. J. C, 80(1)(2020), 6.
Olver, F.W.J., Asymptotics and Special Functions, Academic Press, New York, 1974.
Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F. et all. (eds.), NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.0.27, 2020.
Petroff, D., Slowly rotating homogeneous stars and the Heun equation, Class. Quant. Grav., 24(2007), 1055-1068. [arXiv:gr-qc/0701081 [grqc]].
REDUCE, a portable general-purpose computer algebra system, https://reduce-algebra.sourceforge.io/, 2020.
Ronveaux, A. (ed.), Heun’s Differential Equations, Oxford University Press, New York, 1995.
SageMath, The Sage Mathematics Software System (Version 9.2), The Sage Developers, https://www.sagemath.org, 2020.
Sakallı, İ., Jusufi, K., Övgün, A., Analytical solutions in a cosmic string born-infeld-dilaton black hole geometry: Quasinormal modes and quantization, Gen. Rel. Grav., 50(10)(2018), 125. [arXiv:1803.10583 [gr-qc]].
Slavyanov, S.Yu., Lay, W., Special Functions, A Unified Theory Based on Singularities, Oxford University Press, New York, 2000.
“Solving Some Second Order Linear ODEs that Admit Hypergeometric 2F1, 1F1, and 0F1 Function Solutions”, Accessed 12 June 2022, https://www.maplesoft.com/support/help/Maple/view.aspx?path=dsolve/hyper3.
“The five Second Order Linear Heun equations and the corresponding Heun function solutions”, Accessed 12 June 2022, https://www.maplesoft.com/support/help/Maple/view.aspx?path=Heun.
Vieira, H.S., Resonant frequencies of the hydrodynamic vortex, Int. J. Mod. Phys. D 26, no.04(2016), 1750035. [arXiv:1510.08298 [gr-qc]].
Vit´oria, R.L.L., Furtado, C. and Bakke, K., On a relativistic particle and a relativistic position-dependent mass particle subject to the Klein–Gordon oscillator and the Coulomb potential, Annals Phys. 370(2016), 128-136. [arXiv:1511.05072 [quant-ph]].
Birkandan, T. (2022). Symbolic Analysis of Second-order Ordinary Differential Equations with Polynomial Coefficients. Turkish Journal of Mathematics and Computer Science, 14(2), 281-291. https://doi.org/10.47000/tjmcs.1025121
AMA
Birkandan T. Symbolic Analysis of Second-order Ordinary Differential Equations with Polynomial Coefficients. TJMCS. December 2022;14(2):281-291. doi:10.47000/tjmcs.1025121
Chicago
Birkandan, Tolga. “Symbolic Analysis of Second-Order Ordinary Differential Equations With Polynomial Coefficients”. Turkish Journal of Mathematics and Computer Science 14, no. 2 (December 2022): 281-91. https://doi.org/10.47000/tjmcs.1025121.
EndNote
Birkandan T (December 1, 2022) Symbolic Analysis of Second-order Ordinary Differential Equations with Polynomial Coefficients. Turkish Journal of Mathematics and Computer Science 14 2 281–291.
IEEE
T. Birkandan, “Symbolic Analysis of Second-order Ordinary Differential Equations with Polynomial Coefficients”, TJMCS, vol. 14, no. 2, pp. 281–291, 2022, doi: 10.47000/tjmcs.1025121.
ISNAD
Birkandan, Tolga. “Symbolic Analysis of Second-Order Ordinary Differential Equations With Polynomial Coefficients”. Turkish Journal of Mathematics and Computer Science 14/2 (December 2022), 281-291. https://doi.org/10.47000/tjmcs.1025121.
JAMA
Birkandan T. Symbolic Analysis of Second-order Ordinary Differential Equations with Polynomial Coefficients. TJMCS. 2022;14:281–291.
MLA
Birkandan, Tolga. “Symbolic Analysis of Second-Order Ordinary Differential Equations With Polynomial Coefficients”. Turkish Journal of Mathematics and Computer Science, vol. 14, no. 2, 2022, pp. 281-9, doi:10.47000/tjmcs.1025121.
Vancouver
Birkandan T. Symbolic Analysis of Second-order Ordinary Differential Equations with Polynomial Coefficients. TJMCS. 2022;14(2):281-9.