Research Article
BibTex RIS Cite

Matrices with Hyperbolic Number Entries

Year 2022, , 306 - 313, 30.12.2022
https://doi.org/10.47000/tjmcs.1071829

Abstract

In this study, firstly, we will present some properties of hyperbolic numbers. Then, we will introduce hyperbolic matrices, which are matrices with hyperbolic number entries. Additionally, we will examine the algebraic properties of these matrices and reveal its difference from other matrix structures such as real, dual, and complex matrices. As a result of comparing the results found in this work with real, dual, and complex matrices, it will be revealed that there are similarities in additive properties and differences in some multiplicative properties. Finally, we will define some special hyperbolic matrices and give their properties and relations with real matrices.

References

  • Alagöz, Y., Oral, K.H., Yüce, S., Split quaternion matrices, Miskolc Mathematical Notes, 13(2)(2012), 223–232.
  • Assis, A.K.T., Perplex numbers and quaternions, International Journal of Mathematical Education in Science and Technology, 22(4)(1991), 555–562.
  • Beauregard, R.A., Suryanarayan E.R., Pythagorean triples: the hyperbolic view, The College Mathematics Journal, 27(3)(1996), 170–181.
  • Dağdeviren, A., Kürüz, F., Special real and dual matrices with Hadamard product, Journal of Engineering Technology and Applied Sciences, 6(2)(2021), 127–134.
  • Dağdeviren, A., Lorentz matris carpimi ve dual matrislerin ozellikleri, Master’s Thesis, Yildiz Technical University, 2013.
  • Fjelstad, P., Extending special relativity via the perplex numbers, American Journal of Physics, 54(5)(1986), 416–422.
  • Gutin, R., Matrix decompositions over the split-complex numbers, arXiv preprint arXiv:2105.08047, (2021).
  • Kulyabov, D.S., Korolkova, A.V., Gevorkyan, M.N., Hyperbolic numbers as Einstein numbers, In Journal of Physics: Conference Series, IOP Publishing, 1557(1)(2020), 12–27.
  • Motter, A.E., Rosa, M.A.F., Hyperbolic calculus, Advances in Applied Clifford Algebras, 8(1)(1998), 109–128.
  • Petroudi, S.H.J., Pirouz, M., Akbiyik, M., Yilmaz, F., Some special matrices with harmonic numbers, Konuralp Journal of Mathematics, 10(1)(2022), 188–196.
  • Sobczyk, G., The hyperbolic number plane, The College Mathematics Journal, 26(4)(1995), 268–280.
  • Stanimirovi´c, P., Nikolov, J., Stanimirovi´c, I., A generalization of Fibonacci and Lucas matrices, Discrete Applied Mathematics, 156(14)(2008), 2606–2619.
  • Yaglom, I.M., Complex Numbers in Geometry, Academic Press, 2014.
Year 2022, , 306 - 313, 30.12.2022
https://doi.org/10.47000/tjmcs.1071829

Abstract

References

  • Alagöz, Y., Oral, K.H., Yüce, S., Split quaternion matrices, Miskolc Mathematical Notes, 13(2)(2012), 223–232.
  • Assis, A.K.T., Perplex numbers and quaternions, International Journal of Mathematical Education in Science and Technology, 22(4)(1991), 555–562.
  • Beauregard, R.A., Suryanarayan E.R., Pythagorean triples: the hyperbolic view, The College Mathematics Journal, 27(3)(1996), 170–181.
  • Dağdeviren, A., Kürüz, F., Special real and dual matrices with Hadamard product, Journal of Engineering Technology and Applied Sciences, 6(2)(2021), 127–134.
  • Dağdeviren, A., Lorentz matris carpimi ve dual matrislerin ozellikleri, Master’s Thesis, Yildiz Technical University, 2013.
  • Fjelstad, P., Extending special relativity via the perplex numbers, American Journal of Physics, 54(5)(1986), 416–422.
  • Gutin, R., Matrix decompositions over the split-complex numbers, arXiv preprint arXiv:2105.08047, (2021).
  • Kulyabov, D.S., Korolkova, A.V., Gevorkyan, M.N., Hyperbolic numbers as Einstein numbers, In Journal of Physics: Conference Series, IOP Publishing, 1557(1)(2020), 12–27.
  • Motter, A.E., Rosa, M.A.F., Hyperbolic calculus, Advances in Applied Clifford Algebras, 8(1)(1998), 109–128.
  • Petroudi, S.H.J., Pirouz, M., Akbiyik, M., Yilmaz, F., Some special matrices with harmonic numbers, Konuralp Journal of Mathematics, 10(1)(2022), 188–196.
  • Sobczyk, G., The hyperbolic number plane, The College Mathematics Journal, 26(4)(1995), 268–280.
  • Stanimirovi´c, P., Nikolov, J., Stanimirovi´c, I., A generalization of Fibonacci and Lucas matrices, Discrete Applied Mathematics, 156(14)(2008), 2606–2619.
  • Yaglom, I.M., Complex Numbers in Geometry, Academic Press, 2014.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ferhat Kuruz 0000-0001-6197-4958

Ali Dağdeviren 0000-0003-4887-405X

Publication Date December 30, 2022
Published in Issue Year 2022

Cite

APA Kuruz, F., & Dağdeviren, A. (2022). Matrices with Hyperbolic Number Entries. Turkish Journal of Mathematics and Computer Science, 14(2), 306-313. https://doi.org/10.47000/tjmcs.1071829
AMA Kuruz F, Dağdeviren A. Matrices with Hyperbolic Number Entries. TJMCS. December 2022;14(2):306-313. doi:10.47000/tjmcs.1071829
Chicago Kuruz, Ferhat, and Ali Dağdeviren. “Matrices With Hyperbolic Number Entries”. Turkish Journal of Mathematics and Computer Science 14, no. 2 (December 2022): 306-13. https://doi.org/10.47000/tjmcs.1071829.
EndNote Kuruz F, Dağdeviren A (December 1, 2022) Matrices with Hyperbolic Number Entries. Turkish Journal of Mathematics and Computer Science 14 2 306–313.
IEEE F. Kuruz and A. Dağdeviren, “Matrices with Hyperbolic Number Entries”, TJMCS, vol. 14, no. 2, pp. 306–313, 2022, doi: 10.47000/tjmcs.1071829.
ISNAD Kuruz, Ferhat - Dağdeviren, Ali. “Matrices With Hyperbolic Number Entries”. Turkish Journal of Mathematics and Computer Science 14/2 (December 2022), 306-313. https://doi.org/10.47000/tjmcs.1071829.
JAMA Kuruz F, Dağdeviren A. Matrices with Hyperbolic Number Entries. TJMCS. 2022;14:306–313.
MLA Kuruz, Ferhat and Ali Dağdeviren. “Matrices With Hyperbolic Number Entries”. Turkish Journal of Mathematics and Computer Science, vol. 14, no. 2, 2022, pp. 306-13, doi:10.47000/tjmcs.1071829.
Vancouver Kuruz F, Dağdeviren A. Matrices with Hyperbolic Number Entries. TJMCS. 2022;14(2):306-13.