Research Article
BibTex RIS Cite

Hyper-Fibonacci and Hyper-Lucas Polynomials

Year 2023, , 63 - 70, 30.06.2023
https://doi.org/10.47000/tjmcs.1123369

Abstract

In this paper, hyper-Fibonacci and hyper-Lucas polynomials are defined and some of their algebraic and combinatorial properties such as the recurrence relations, summation formulas, and generating functions are presented. In addition, some relationships between the hyper-Fibonacci and hyper-Lucas polynomials are given.

References

  • Bahşi, M., Mezö, I., Solak S., A symmetric algorithm for hyper-Fibonacci and hyper-Lucas numbers, Annales Mathematicae et Informaticae, 43(2014), 19–27.
  • Bicknell, M., A primer for the Fibonacci numbers VII, The Fibonacci Quarterly, 8(4)(1970), 407–420.
  • Bicknell, M., Hoggatt, Jr.V.E., Roots of Fibonacci Polynomials, The Fibonacci Quarterly, 11(5)(1973), 271–274.
  • Catarino, P., A note on h (x)- Fibonacci quaternion polynomials, Chaos, Solitons and Fractals, 77(2015), 1–5.
  • Catarino, P., The h (x)- Fibonacci quaternion polynomials: some combinatorial properties, Advances in Applied Clifford Algebras, 26(2016), 71–79.
  • Dil, A., Mezö, I., A symmetric algorithm hyperharmonic and Fibonacci numbers, Applied Mathematics and Computation, 206(2008), 942–951.
  • Dumont, D., Euler-Seidel matrices (Matrices d’Euler-Seidel), S´eminaire Lotharingien de Combinatoire [electronic only], (1981), B05c-25.
  • Graham, R.L., Knuth, D.E., Patashnik, O., Concrete Mathematics, Addison Wesley, Reading, MA., 1993.
  • Horzum, T., Koçer, E.G., On some properties of Horadam polynomials, International Mathematical Forum, 4(25) (2009), 1243–1252.
  • Kilic, E., Tasci, D., Negatively subscripted Fibonacci and Lucas numbers and their complex factorizations, Ars Combinatoria, 96(2010), 275–288.
  • Kızılateş, C., A note on Horadam hybrinomials, Fundamental Journal of Mathematics and Applications, 5(1)(2022), 1–9.
  • Koshy, T., Fibonacci and Lucas Numbers with Applications, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs, and Tracts, New York: Wiley, 2001.
  • Özdemir, G., Şimşek, Y., Generating functions for two variable polynomials related to a family of Fibonacci type polynomials and numbers, Filomat, 30(4)(2016), 969–975.
  • Özkan, E., Altun, İ., Generalized Lucas polynomials and relationships between the Fibonacci polynomials and Lucas polynomials, Communications in Algebra, 47(10)(2019), 4020–4030.
  • Soykan, Y., On generalized Fibonacci polynomials: Horadam polynomials, Earthline Journal of Mathematical Sciences, 11(1)(2023), 23–114.
  • Szynal-Liana, A., Wloch, I., Generalized Fibonacci-Pell hybrinomials, Online Journal of Analytic Combinatorics, 15(2020), 1–12.
  • Szynal-Liana, A.,Wloch, I., Introduction to Fibonacci and Lucas hybrinomials, Complex Variables and Elliptic Equations, 65(10)(2020), 1736–1747.
  • Webb, W.A., Parberry, E.A., Divisibility properties of Fibonacci polynomials, The Fibonacci Quarterly, 7(5)(1969), 457–463.
  • Yuan, Y., Zhang, W., Some identities involving the Fibonacci polynomials, The Fibonacci Quarterly, 40(4)(2002), 314–318.
Year 2023, , 63 - 70, 30.06.2023
https://doi.org/10.47000/tjmcs.1123369

Abstract

References

  • Bahşi, M., Mezö, I., Solak S., A symmetric algorithm for hyper-Fibonacci and hyper-Lucas numbers, Annales Mathematicae et Informaticae, 43(2014), 19–27.
  • Bicknell, M., A primer for the Fibonacci numbers VII, The Fibonacci Quarterly, 8(4)(1970), 407–420.
  • Bicknell, M., Hoggatt, Jr.V.E., Roots of Fibonacci Polynomials, The Fibonacci Quarterly, 11(5)(1973), 271–274.
  • Catarino, P., A note on h (x)- Fibonacci quaternion polynomials, Chaos, Solitons and Fractals, 77(2015), 1–5.
  • Catarino, P., The h (x)- Fibonacci quaternion polynomials: some combinatorial properties, Advances in Applied Clifford Algebras, 26(2016), 71–79.
  • Dil, A., Mezö, I., A symmetric algorithm hyperharmonic and Fibonacci numbers, Applied Mathematics and Computation, 206(2008), 942–951.
  • Dumont, D., Euler-Seidel matrices (Matrices d’Euler-Seidel), S´eminaire Lotharingien de Combinatoire [electronic only], (1981), B05c-25.
  • Graham, R.L., Knuth, D.E., Patashnik, O., Concrete Mathematics, Addison Wesley, Reading, MA., 1993.
  • Horzum, T., Koçer, E.G., On some properties of Horadam polynomials, International Mathematical Forum, 4(25) (2009), 1243–1252.
  • Kilic, E., Tasci, D., Negatively subscripted Fibonacci and Lucas numbers and their complex factorizations, Ars Combinatoria, 96(2010), 275–288.
  • Kızılateş, C., A note on Horadam hybrinomials, Fundamental Journal of Mathematics and Applications, 5(1)(2022), 1–9.
  • Koshy, T., Fibonacci and Lucas Numbers with Applications, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs, and Tracts, New York: Wiley, 2001.
  • Özdemir, G., Şimşek, Y., Generating functions for two variable polynomials related to a family of Fibonacci type polynomials and numbers, Filomat, 30(4)(2016), 969–975.
  • Özkan, E., Altun, İ., Generalized Lucas polynomials and relationships between the Fibonacci polynomials and Lucas polynomials, Communications in Algebra, 47(10)(2019), 4020–4030.
  • Soykan, Y., On generalized Fibonacci polynomials: Horadam polynomials, Earthline Journal of Mathematical Sciences, 11(1)(2023), 23–114.
  • Szynal-Liana, A., Wloch, I., Generalized Fibonacci-Pell hybrinomials, Online Journal of Analytic Combinatorics, 15(2020), 1–12.
  • Szynal-Liana, A.,Wloch, I., Introduction to Fibonacci and Lucas hybrinomials, Complex Variables and Elliptic Equations, 65(10)(2020), 1736–1747.
  • Webb, W.A., Parberry, E.A., Divisibility properties of Fibonacci polynomials, The Fibonacci Quarterly, 7(5)(1969), 457–463.
  • Yuan, Y., Zhang, W., Some identities involving the Fibonacci polynomials, The Fibonacci Quarterly, 40(4)(2002), 314–318.
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Efruz Özlem Mersin 0000-0001-6260-9063

Publication Date June 30, 2023
Published in Issue Year 2023

Cite

APA Mersin, E. Ö. (2023). Hyper-Fibonacci and Hyper-Lucas Polynomials. Turkish Journal of Mathematics and Computer Science, 15(1), 63-70. https://doi.org/10.47000/tjmcs.1123369
AMA Mersin EÖ. Hyper-Fibonacci and Hyper-Lucas Polynomials. TJMCS. June 2023;15(1):63-70. doi:10.47000/tjmcs.1123369
Chicago Mersin, Efruz Özlem. “Hyper-Fibonacci and Hyper-Lucas Polynomials”. Turkish Journal of Mathematics and Computer Science 15, no. 1 (June 2023): 63-70. https://doi.org/10.47000/tjmcs.1123369.
EndNote Mersin EÖ (June 1, 2023) Hyper-Fibonacci and Hyper-Lucas Polynomials. Turkish Journal of Mathematics and Computer Science 15 1 63–70.
IEEE E. Ö. Mersin, “Hyper-Fibonacci and Hyper-Lucas Polynomials”, TJMCS, vol. 15, no. 1, pp. 63–70, 2023, doi: 10.47000/tjmcs.1123369.
ISNAD Mersin, Efruz Özlem. “Hyper-Fibonacci and Hyper-Lucas Polynomials”. Turkish Journal of Mathematics and Computer Science 15/1 (June 2023), 63-70. https://doi.org/10.47000/tjmcs.1123369.
JAMA Mersin EÖ. Hyper-Fibonacci and Hyper-Lucas Polynomials. TJMCS. 2023;15:63–70.
MLA Mersin, Efruz Özlem. “Hyper-Fibonacci and Hyper-Lucas Polynomials”. Turkish Journal of Mathematics and Computer Science, vol. 15, no. 1, 2023, pp. 63-70, doi:10.47000/tjmcs.1123369.
Vancouver Mersin EÖ. Hyper-Fibonacci and Hyper-Lucas Polynomials. TJMCS. 2023;15(1):63-70.