Research Article
BibTex RIS Cite

$\Psi_{\Gamma}-C$ Sets in Ideal Topological Spaces

Year 2023, , 27 - 34, 30.06.2023
https://doi.org/10.47000/tjmcs.1123430

Abstract

In this paper, we present a new type of set called $\Psi_{\Gamma}-C$ set by using the operator $\Psi_{\Gamma}$. We investigate the relationships of these sets with some special sets which were studied in the literature. For instance $\theta$-open set, semi $\theta$-open set, $\theta$-semiopen set, regular $\theta$-closed set. In particular, we show that $\Psi_{\Gamma}-C$ set is weaker than $\theta$-open set. Furthermore, we prove that the collection of $\Psi_{\Gamma}-C$ set is closed under arbitrary union. Finally, we obtain the conclusion that the collection of $\Psi_{\Gamma}-C$ set forms a supratopology.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Al-Omari, A., Noiri, T., Local closure functions in ideal topological spaces, Novi Sad J. Math., 43(2)(2013), 139–149.
  • Amsaveni, V., Anitha, M., Subramanian, A., New types of semi-open sets, International Journal of New Innovations in Engineering and Technology, 9(4)(2019), 14–17.
  • Bandyopadhyay, C., Modak, S., A new topology via $\Psi$-operator, Proc. Nat. Acad. Sci. India, 76(4)(2006), 317–320.
  • Caldas, M., Ganster, M., Georgiou, D. N., Jafari, S., Noiri, T., On $\theta$-semiopen sets and separation axioms in topological spaces, Carpathian J. Math., 24(1)(2008), 13–22.
  • Devika, A., Thilagavathi, A., $M^{\ast}$-open sets in topological spaces, International Journal of Mathematics and Its Applications, 4(1-B)(2016), 1–8.
  • Islam, Md. M., Modak, S., Operators associated with the $*$ and $\psi$ operators, J. Taibah Univ. Sci., 12(4)(2018), 444–449.
  • Islam, Md. M., Modak, S., Second approximation of local functions in ideal topological spaces, Acta Comment. Univ. Tartu. Math., 22(2)(2018), 245–256.
  • Kuratowski, K., Topology, Vol. I, Academic Press, New York, 1966.
  • Levine, N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89–96.
  • Mashhour, A.S., Abd El-Monsef, M. E., El-Deeb, S.N., On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47–53.
  • Mashhour, A.S., Allam, A. A., Mahmoud, F.S., Khedr, F.H., On supratopological spaces, Indian J. Pure and Appl. Math., 14(4)(1983), 502–510.
  • Modak, S., Some new topologies on ideal topological spaces, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., 82(3)(2012), 233–243.
  • Modak, S., Bandyopadhyay, C., A note on $\Psi$-operator, Bull. Malays. Math. Sci. Soc. (2), 30(1)(2007), 43–48.
  • Natkaniec, T., On I-continuity and I-semicontinuity points, Mathematica Slovaca, 36(3)(1986), 297–312.
  • Noorie, N.S., Goyal, N., On $S_{2\frac{1}{2}}$ mod I spaces and $\theta^{I}$-closed sets, International Journal of Mathematics Trends and Technology, 52(4)(2017), 226–228.
  • Pavlovic, A., Local function versus local closure function in ideal topological spaces, Filomat, 30(14)(2016), 3725–3731.
  • Tunç, A.N., O¨ zen Yıldırım, S., A study on further properties of local closure functions, 7th International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM 2020), (2020), 123–123.
  • Tunç, A.N., Özen Yıldırım, S., New sets obtained by local closure functions, Annals of Pure and Applied Mathematical Sciences, 1(1)(2021), 50–59.
  • Velicko, N.V., H-closed topological spaces, Mat. Sb. (N.S.), 70(112)(1966), 98–112. English transl., Amer. Math. Soc. Transl., 78(2)(1968), 102–118.
Year 2023, , 27 - 34, 30.06.2023
https://doi.org/10.47000/tjmcs.1123430

Abstract

Project Number

-

References

  • Al-Omari, A., Noiri, T., Local closure functions in ideal topological spaces, Novi Sad J. Math., 43(2)(2013), 139–149.
  • Amsaveni, V., Anitha, M., Subramanian, A., New types of semi-open sets, International Journal of New Innovations in Engineering and Technology, 9(4)(2019), 14–17.
  • Bandyopadhyay, C., Modak, S., A new topology via $\Psi$-operator, Proc. Nat. Acad. Sci. India, 76(4)(2006), 317–320.
  • Caldas, M., Ganster, M., Georgiou, D. N., Jafari, S., Noiri, T., On $\theta$-semiopen sets and separation axioms in topological spaces, Carpathian J. Math., 24(1)(2008), 13–22.
  • Devika, A., Thilagavathi, A., $M^{\ast}$-open sets in topological spaces, International Journal of Mathematics and Its Applications, 4(1-B)(2016), 1–8.
  • Islam, Md. M., Modak, S., Operators associated with the $*$ and $\psi$ operators, J. Taibah Univ. Sci., 12(4)(2018), 444–449.
  • Islam, Md. M., Modak, S., Second approximation of local functions in ideal topological spaces, Acta Comment. Univ. Tartu. Math., 22(2)(2018), 245–256.
  • Kuratowski, K., Topology, Vol. I, Academic Press, New York, 1966.
  • Levine, N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89–96.
  • Mashhour, A.S., Abd El-Monsef, M. E., El-Deeb, S.N., On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47–53.
  • Mashhour, A.S., Allam, A. A., Mahmoud, F.S., Khedr, F.H., On supratopological spaces, Indian J. Pure and Appl. Math., 14(4)(1983), 502–510.
  • Modak, S., Some new topologies on ideal topological spaces, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., 82(3)(2012), 233–243.
  • Modak, S., Bandyopadhyay, C., A note on $\Psi$-operator, Bull. Malays. Math. Sci. Soc. (2), 30(1)(2007), 43–48.
  • Natkaniec, T., On I-continuity and I-semicontinuity points, Mathematica Slovaca, 36(3)(1986), 297–312.
  • Noorie, N.S., Goyal, N., On $S_{2\frac{1}{2}}$ mod I spaces and $\theta^{I}$-closed sets, International Journal of Mathematics Trends and Technology, 52(4)(2017), 226–228.
  • Pavlovic, A., Local function versus local closure function in ideal topological spaces, Filomat, 30(14)(2016), 3725–3731.
  • Tunç, A.N., O¨ zen Yıldırım, S., A study on further properties of local closure functions, 7th International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM 2020), (2020), 123–123.
  • Tunç, A.N., Özen Yıldırım, S., New sets obtained by local closure functions, Annals of Pure and Applied Mathematical Sciences, 1(1)(2021), 50–59.
  • Velicko, N.V., H-closed topological spaces, Mat. Sb. (N.S.), 70(112)(1966), 98–112. English transl., Amer. Math. Soc. Transl., 78(2)(1968), 102–118.
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ayşe Nur Tunç 0000-0003-3439-4223

Sena Özen Yıldırım 0000-0002-4460-2949

Project Number -
Publication Date June 30, 2023
Published in Issue Year 2023

Cite

APA Tunç, A. N., & Özen Yıldırım, S. (2023). $\Psi_{\Gamma}-C$ Sets in Ideal Topological Spaces. Turkish Journal of Mathematics and Computer Science, 15(1), 27-34. https://doi.org/10.47000/tjmcs.1123430
AMA Tunç AN, Özen Yıldırım S. $\Psi_{\Gamma}-C$ Sets in Ideal Topological Spaces. TJMCS. June 2023;15(1):27-34. doi:10.47000/tjmcs.1123430
Chicago Tunç, Ayşe Nur, and Sena Özen Yıldırım. “$\Psi_{\Gamma}-C$ Sets in Ideal Topological Spaces”. Turkish Journal of Mathematics and Computer Science 15, no. 1 (June 2023): 27-34. https://doi.org/10.47000/tjmcs.1123430.
EndNote Tunç AN, Özen Yıldırım S (June 1, 2023) $\Psi_{\Gamma}-C$ Sets in Ideal Topological Spaces. Turkish Journal of Mathematics and Computer Science 15 1 27–34.
IEEE A. N. Tunç and S. Özen Yıldırım, “$\Psi_{\Gamma}-C$ Sets in Ideal Topological Spaces”, TJMCS, vol. 15, no. 1, pp. 27–34, 2023, doi: 10.47000/tjmcs.1123430.
ISNAD Tunç, Ayşe Nur - Özen Yıldırım, Sena. “$\Psi_{\Gamma}-C$ Sets in Ideal Topological Spaces”. Turkish Journal of Mathematics and Computer Science 15/1 (June 2023), 27-34. https://doi.org/10.47000/tjmcs.1123430.
JAMA Tunç AN, Özen Yıldırım S. $\Psi_{\Gamma}-C$ Sets in Ideal Topological Spaces. TJMCS. 2023;15:27–34.
MLA Tunç, Ayşe Nur and Sena Özen Yıldırım. “$\Psi_{\Gamma}-C$ Sets in Ideal Topological Spaces”. Turkish Journal of Mathematics and Computer Science, vol. 15, no. 1, 2023, pp. 27-34, doi:10.47000/tjmcs.1123430.
Vancouver Tunç AN, Özen Yıldırım S. $\Psi_{\Gamma}-C$ Sets in Ideal Topological Spaces. TJMCS. 2023;15(1):27-34.