Research Article
BibTex RIS Cite

On a Topological Operator via Local Closure Function

Year 2023, , 227 - 236, 31.12.2023
https://doi.org/10.47000/tjmcs.1195540

Abstract

In this research, we define and study the new topological operator called $\Gamma$-boundary operator $Bd^{\Gamma}$ by merging local closure function in ideal topological spaces. We research essential properties of this operator and we specialize $\Gamma$-boundary of some special sets, such as $\theta$-open, $\Im_{\Gamma}$-perfect and $\Im_{\Gamma}$-dense. Moreover, we examine the properties of this operator in the topology which is formed by using local closure function. Furthermore, we compare $\Gamma$-boundary operator with the boundary operator and the $*$-boundary operator. We also show that under what conditions $\Gamma$-boundary operator, boundary operator and $*$-boundary operator are coincide.

References

  • Al-Omari, A., Noiri, T., Local closure functions in ideal topological spaces, Novi Sad J. Math., 43(2)(2013), 139–149.
  • Bourbaki, N., General Topology, Chapter 1-4, Springer, 1989.
  • Dontchev, J., Idealization of Ganster-Reilly decomposition theorems, arXiv: math. Gn/9901017v1, 5 Jan 1999.
  • Goyal, N., Noorie, N.S., $\theta$-closure and $T_{2\frac{1}{2}}$ spaces via ideals, Italian Journal of Pure and Applied Mathematics, 41(2019), 571–583.
  • Kuratowski, K., Topology, Vol. I, Academic Press, New York, 1966.
  • Levine, N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89–96.
  • Mashhour, A.S., Abd El-Monsef, M.E., El-Deeb, S.N., On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47–53.
  • Natkaniec, T., On I-continuity and I-semicontinuity points, Math. Slovaca, 36(3)(1986), 297–312.
  • Njamcul, A., Pavlovi´c, A., On closure compatibility of ideal topological spaces and idempotency of the local closure function, Periodica Mathematica Hungarica, 84(2)(2022), 221–234.
  • Noorie, N.S., Goyal, N., On $S_{2\frac{1}{2}}$ mod I spaces and $\theta^{I}$-closed sets, International Journal of Mathematics Trends and Technology, 52(4)(2017), 226–228.
  • Pavlovic, A., Local function versus local closure function in ideal topological spaces, Filomat, 30(14)(2016), 3725–3731.
  • Selim, Sk., Modak, S., Islam, Md. M., Characterizations of Hayashi-Samuel spaces via boundary points, Commun. Adv. Math. Sci., 2(3)(2019), 219–226.
  • Tunç, A.N., Özen Yıldırım, S., New sets obtained by local closure functions, Annals of Pure and Applied Mathematical Sciences, 1(1)(2021), 50–59.
  • Tunç, A. N., Özen Yıldırım, S., A study on further properties of local closure functions, 7th International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM 2020), (2020), 123–123.
  • Vaidyanathaswamy, R., The localisation theory in set-topology, Proc. Indian Acad. Sci., Sect. A., 20(1944), 51–61.
  • Velicko, N. V., H-closed topological spaces, Mat. Sb. (N.S.), 70(112)(1966), 98–112. English transl., Amer. Math. Soc. Transl., 78(2)(1968), 102–118.
Year 2023, , 227 - 236, 31.12.2023
https://doi.org/10.47000/tjmcs.1195540

Abstract

References

  • Al-Omari, A., Noiri, T., Local closure functions in ideal topological spaces, Novi Sad J. Math., 43(2)(2013), 139–149.
  • Bourbaki, N., General Topology, Chapter 1-4, Springer, 1989.
  • Dontchev, J., Idealization of Ganster-Reilly decomposition theorems, arXiv: math. Gn/9901017v1, 5 Jan 1999.
  • Goyal, N., Noorie, N.S., $\theta$-closure and $T_{2\frac{1}{2}}$ spaces via ideals, Italian Journal of Pure and Applied Mathematics, 41(2019), 571–583.
  • Kuratowski, K., Topology, Vol. I, Academic Press, New York, 1966.
  • Levine, N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89–96.
  • Mashhour, A.S., Abd El-Monsef, M.E., El-Deeb, S.N., On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47–53.
  • Natkaniec, T., On I-continuity and I-semicontinuity points, Math. Slovaca, 36(3)(1986), 297–312.
  • Njamcul, A., Pavlovi´c, A., On closure compatibility of ideal topological spaces and idempotency of the local closure function, Periodica Mathematica Hungarica, 84(2)(2022), 221–234.
  • Noorie, N.S., Goyal, N., On $S_{2\frac{1}{2}}$ mod I spaces and $\theta^{I}$-closed sets, International Journal of Mathematics Trends and Technology, 52(4)(2017), 226–228.
  • Pavlovic, A., Local function versus local closure function in ideal topological spaces, Filomat, 30(14)(2016), 3725–3731.
  • Selim, Sk., Modak, S., Islam, Md. M., Characterizations of Hayashi-Samuel spaces via boundary points, Commun. Adv. Math. Sci., 2(3)(2019), 219–226.
  • Tunç, A.N., Özen Yıldırım, S., New sets obtained by local closure functions, Annals of Pure and Applied Mathematical Sciences, 1(1)(2021), 50–59.
  • Tunç, A. N., Özen Yıldırım, S., A study on further properties of local closure functions, 7th International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM 2020), (2020), 123–123.
  • Vaidyanathaswamy, R., The localisation theory in set-topology, Proc. Indian Acad. Sci., Sect. A., 20(1944), 51–61.
  • Velicko, N. V., H-closed topological spaces, Mat. Sb. (N.S.), 70(112)(1966), 98–112. English transl., Amer. Math. Soc. Transl., 78(2)(1968), 102–118.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ayşe Nur Tunç 0000-0003-3439-4223

Sena Özen Yıldırım 0000-0002-4460-2949

Publication Date December 31, 2023
Published in Issue Year 2023

Cite

APA Tunç, A. N., & Özen Yıldırım, S. (2023). On a Topological Operator via Local Closure Function. Turkish Journal of Mathematics and Computer Science, 15(2), 227-236. https://doi.org/10.47000/tjmcs.1195540
AMA Tunç AN, Özen Yıldırım S. On a Topological Operator via Local Closure Function. TJMCS. December 2023;15(2):227-236. doi:10.47000/tjmcs.1195540
Chicago Tunç, Ayşe Nur, and Sena Özen Yıldırım. “On a Topological Operator via Local Closure Function”. Turkish Journal of Mathematics and Computer Science 15, no. 2 (December 2023): 227-36. https://doi.org/10.47000/tjmcs.1195540.
EndNote Tunç AN, Özen Yıldırım S (December 1, 2023) On a Topological Operator via Local Closure Function. Turkish Journal of Mathematics and Computer Science 15 2 227–236.
IEEE A. N. Tunç and S. Özen Yıldırım, “On a Topological Operator via Local Closure Function”, TJMCS, vol. 15, no. 2, pp. 227–236, 2023, doi: 10.47000/tjmcs.1195540.
ISNAD Tunç, Ayşe Nur - Özen Yıldırım, Sena. “On a Topological Operator via Local Closure Function”. Turkish Journal of Mathematics and Computer Science 15/2 (December 2023), 227-236. https://doi.org/10.47000/tjmcs.1195540.
JAMA Tunç AN, Özen Yıldırım S. On a Topological Operator via Local Closure Function. TJMCS. 2023;15:227–236.
MLA Tunç, Ayşe Nur and Sena Özen Yıldırım. “On a Topological Operator via Local Closure Function”. Turkish Journal of Mathematics and Computer Science, vol. 15, no. 2, 2023, pp. 227-36, doi:10.47000/tjmcs.1195540.
Vancouver Tunç AN, Özen Yıldırım S. On a Topological Operator via Local Closure Function. TJMCS. 2023;15(2):227-36.