A Note on Hyper-Dual Numbers with the Leonardo-Alwyn Sequence
Year 2024,
, 154 - 161, 30.06.2024
Gülsüm Yeliz Saçlı
,
Salim Yüce
Abstract
We are interested in identifying hyper-dual numbers with the Leonardo-Alwyn sequence components. We investigate their homogeneous and non-homogeneous recurrence relations, the Binet’s formula, and the generating function. With these algebraic properties, we are able to obtain some special cases of hyper-dual numbers with the Leonardo-Alwyn sequence according to $p,q$ and $c$ (multipliers).
Thanks
Melek Erdoğdu, Türkiye, Necmettin Erbakan Üniversitesi, merdogdu@erbakan.edu.tr
Ayşe Zeynep Azak, Sakarya Üniversitesi, apirdal@sakarya.edu.tr
Firdaus E Udwadia, USA, University of Southern California, fudwadia@usc.edu
Kalika Prasad, India, Central University of Jharkhand, klkaprsd@gmail.com
References
- Alp, Y., Koçer, E.G., Hybrid Leonardo numbers, Chaos, Solitons & Fractals, 150(2021).
- Alp, Y., Koçer, E.G., Some properties of Leonardo numbers, Konuralp Journal of Mathematics, 9(1)(2021), 183–189.
- Catarino, P., Borges, A., On Leonardo numbers, Acta Math. Univ. Comenianae, 89(1) (2020), 75–86.
- Cohen, A., Shoham, M., Principle of transference-An extension to hyper-dual numbers, Mech. Mach. Theory, 125(2018), 101–110.
- Fike, J.A., Alonso, J.J., Automatic differentiation through the use of hyper-dual numbers for second derivatives, Lecture Notes in ComputationalScience and Engineering book series (LNCSE), 87(2011), 163–173.
- Gökbaş, H. A new family of number sequences: Leonardo-Alwyn numbers, Armenian Journal of Mathematics, 15(6)(2023), 1–13.
- Horadam, A. F., Generating functions for powers of a certain generalised sequence of numbers, Duke Mathematical Journal, 32(3)(1965), 437–446.
- Horadam, A.F. Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly, 3(3)(1965), 161–176.
- Horadam, A.F. Special properties of the sequence Wn(a, b; p, q), The Fibonacci Quarterly, 5(5)(1967), 424–434.
- Kantor, I., Solodovnikov, A., Hypercomplex Numbers. Springer-Verlag, New York, 1989.
- Karatas, A., On complex Leonardo numbers, Notes on Number Theory and Discrete Mathematics, 28(3)(2022), 458–465.
- Karakuş, S.Ö ., Nurkan, S.K., Turan, M., Hyper-dual Leonardo numbers, Konuralp Journal of Mathematics, 10(2)(2022), 269–275.
- Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, New York, 2001.
- Kuhapatanakul, K., Chobsorn, J. On the generalized Leonardo numbers, Integers, 22 (2022).
- Nurkan, S.K., Güven, İ.A., Ordered Leonardo quadruple numbers, Symmetry, 15(1)(2023), 149.
- Özimamoğlu, H., A new generalization of Leonardo hybrid numbers with q-integers, Indian Journal of Pure and Applied Mathematics, (2023).
- Pennestr`ı, E., Stefanelli, R., Linear algebra and numerical algorithms using dual numbers, Multibody Syst. Dyn., 18(2007), 323–344.
- Shannon, A.G., Deveci, O¨ ., A note on generalized and extended Leonardo sequences, Notes on Number Theory and Discrete Mathematics, 28(1)(2022), 109–114.
- Soykan, Y. Special cases of generalized Leonardo numbers: modified p-Leonardo, p-Leonardo-Lucas and p-Leonardo Numbers, Earthline Journal of Mathematical Sciences, 11(2)(2023), 317–342.
- Study, E., Geometrie der dynamen: Die Zusammensetzung von Kr¨aften und Verwandte Gegenst¨ande der Geometrie Bearb., Leipzig, B.G. Teubner. 1903.
- Tan, E., Leung, H.H., On Leonardo p-numbers, Integers, 23(2023).
- Yaglom, I.M., A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York, 1979.
- Yilmaz, Ç.Z., Saçlı, G.Y., On dual quaternions with k- generalized Leonardo components, Journal of New Theory, 44(2023), 31–42.
Year 2024,
, 154 - 161, 30.06.2024
Gülsüm Yeliz Saçlı
,
Salim Yüce
References
- Alp, Y., Koçer, E.G., Hybrid Leonardo numbers, Chaos, Solitons & Fractals, 150(2021).
- Alp, Y., Koçer, E.G., Some properties of Leonardo numbers, Konuralp Journal of Mathematics, 9(1)(2021), 183–189.
- Catarino, P., Borges, A., On Leonardo numbers, Acta Math. Univ. Comenianae, 89(1) (2020), 75–86.
- Cohen, A., Shoham, M., Principle of transference-An extension to hyper-dual numbers, Mech. Mach. Theory, 125(2018), 101–110.
- Fike, J.A., Alonso, J.J., Automatic differentiation through the use of hyper-dual numbers for second derivatives, Lecture Notes in ComputationalScience and Engineering book series (LNCSE), 87(2011), 163–173.
- Gökbaş, H. A new family of number sequences: Leonardo-Alwyn numbers, Armenian Journal of Mathematics, 15(6)(2023), 1–13.
- Horadam, A. F., Generating functions for powers of a certain generalised sequence of numbers, Duke Mathematical Journal, 32(3)(1965), 437–446.
- Horadam, A.F. Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly, 3(3)(1965), 161–176.
- Horadam, A.F. Special properties of the sequence Wn(a, b; p, q), The Fibonacci Quarterly, 5(5)(1967), 424–434.
- Kantor, I., Solodovnikov, A., Hypercomplex Numbers. Springer-Verlag, New York, 1989.
- Karatas, A., On complex Leonardo numbers, Notes on Number Theory and Discrete Mathematics, 28(3)(2022), 458–465.
- Karakuş, S.Ö ., Nurkan, S.K., Turan, M., Hyper-dual Leonardo numbers, Konuralp Journal of Mathematics, 10(2)(2022), 269–275.
- Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, New York, 2001.
- Kuhapatanakul, K., Chobsorn, J. On the generalized Leonardo numbers, Integers, 22 (2022).
- Nurkan, S.K., Güven, İ.A., Ordered Leonardo quadruple numbers, Symmetry, 15(1)(2023), 149.
- Özimamoğlu, H., A new generalization of Leonardo hybrid numbers with q-integers, Indian Journal of Pure and Applied Mathematics, (2023).
- Pennestr`ı, E., Stefanelli, R., Linear algebra and numerical algorithms using dual numbers, Multibody Syst. Dyn., 18(2007), 323–344.
- Shannon, A.G., Deveci, O¨ ., A note on generalized and extended Leonardo sequences, Notes on Number Theory and Discrete Mathematics, 28(1)(2022), 109–114.
- Soykan, Y. Special cases of generalized Leonardo numbers: modified p-Leonardo, p-Leonardo-Lucas and p-Leonardo Numbers, Earthline Journal of Mathematical Sciences, 11(2)(2023), 317–342.
- Study, E., Geometrie der dynamen: Die Zusammensetzung von Kr¨aften und Verwandte Gegenst¨ande der Geometrie Bearb., Leipzig, B.G. Teubner. 1903.
- Tan, E., Leung, H.H., On Leonardo p-numbers, Integers, 23(2023).
- Yaglom, I.M., A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York, 1979.
- Yilmaz, Ç.Z., Saçlı, G.Y., On dual quaternions with k- generalized Leonardo components, Journal of New Theory, 44(2023), 31–42.