Research Article
BibTex RIS Cite

A Note on Hyper-Dual Numbers with the Leonardo-Alwyn Sequence

Year 2024, , 154 - 161, 30.06.2024
https://doi.org/10.47000/tjmcs.1344439

Abstract

We are interested in identifying hyper-dual numbers with the Leonardo-Alwyn sequence components. We investigate their homogeneous and non-homogeneous recurrence relations, the Binet’s formula, and the generating function. With these algebraic properties, we are able to obtain some special cases of hyper-dual numbers with the Leonardo-Alwyn sequence according to $p,q$ and $c$ (multipliers).

Supporting Institution

-

Project Number

-

Thanks

Melek Erdoğdu, Türkiye, Necmettin Erbakan Üniversitesi, merdogdu@erbakan.edu.tr Ayşe Zeynep Azak, Sakarya Üniversitesi, apirdal@sakarya.edu.tr Firdaus E Udwadia, USA, University of Southern California, fudwadia@usc.edu Kalika Prasad, India, Central University of Jharkhand, klkaprsd@gmail.com

References

  • Alp, Y., Koçer, E.G., Hybrid Leonardo numbers, Chaos, Solitons & Fractals, 150(2021).
  • Alp, Y., Koçer, E.G., Some properties of Leonardo numbers, Konuralp Journal of Mathematics, 9(1)(2021), 183–189.
  • Catarino, P., Borges, A., On Leonardo numbers, Acta Math. Univ. Comenianae, 89(1) (2020), 75–86.
  • Cohen, A., Shoham, M., Principle of transference-An extension to hyper-dual numbers, Mech. Mach. Theory, 125(2018), 101–110.
  • Fike, J.A., Alonso, J.J., Automatic differentiation through the use of hyper-dual numbers for second derivatives, Lecture Notes in ComputationalScience and Engineering book series (LNCSE), 87(2011), 163–173.
  • Gökbaş, H. A new family of number sequences: Leonardo-Alwyn numbers, Armenian Journal of Mathematics, 15(6)(2023), 1–13.
  • Horadam, A. F., Generating functions for powers of a certain generalised sequence of numbers, Duke Mathematical Journal, 32(3)(1965), 437–446.
  • Horadam, A.F. Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly, 3(3)(1965), 161–176.
  • Horadam, A.F. Special properties of the sequence Wn(a, b; p, q), The Fibonacci Quarterly, 5(5)(1967), 424–434.
  • Kantor, I., Solodovnikov, A., Hypercomplex Numbers. Springer-Verlag, New York, 1989.
  • Karatas, A., On complex Leonardo numbers, Notes on Number Theory and Discrete Mathematics, 28(3)(2022), 458–465.
  • Karakuş, S.Ö ., Nurkan, S.K., Turan, M., Hyper-dual Leonardo numbers, Konuralp Journal of Mathematics, 10(2)(2022), 269–275.
  • Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, New York, 2001.
  • Kuhapatanakul, K., Chobsorn, J. On the generalized Leonardo numbers, Integers, 22 (2022).
  • Nurkan, S.K., Güven, İ.A., Ordered Leonardo quadruple numbers, Symmetry, 15(1)(2023), 149.
  • Özimamoğlu, H., A new generalization of Leonardo hybrid numbers with q-integers, Indian Journal of Pure and Applied Mathematics, (2023).
  • Pennestr`ı, E., Stefanelli, R., Linear algebra and numerical algorithms using dual numbers, Multibody Syst. Dyn., 18(2007), 323–344.
  • Shannon, A.G., Deveci, O¨ ., A note on generalized and extended Leonardo sequences, Notes on Number Theory and Discrete Mathematics, 28(1)(2022), 109–114.
  • Soykan, Y. Special cases of generalized Leonardo numbers: modified p-Leonardo, p-Leonardo-Lucas and p-Leonardo Numbers, Earthline Journal of Mathematical Sciences, 11(2)(2023), 317–342.
  • Study, E., Geometrie der dynamen: Die Zusammensetzung von Kr¨aften und Verwandte Gegenst¨ande der Geometrie Bearb., Leipzig, B.G. Teubner. 1903.
  • Tan, E., Leung, H.H., On Leonardo p-numbers, Integers, 23(2023).
  • Yaglom, I.M., A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York, 1979.
  • Yilmaz, Ç.Z., Saçlı, G.Y., On dual quaternions with k- generalized Leonardo components, Journal of New Theory, 44(2023), 31–42.
Year 2024, , 154 - 161, 30.06.2024
https://doi.org/10.47000/tjmcs.1344439

Abstract

Project Number

-

References

  • Alp, Y., Koçer, E.G., Hybrid Leonardo numbers, Chaos, Solitons & Fractals, 150(2021).
  • Alp, Y., Koçer, E.G., Some properties of Leonardo numbers, Konuralp Journal of Mathematics, 9(1)(2021), 183–189.
  • Catarino, P., Borges, A., On Leonardo numbers, Acta Math. Univ. Comenianae, 89(1) (2020), 75–86.
  • Cohen, A., Shoham, M., Principle of transference-An extension to hyper-dual numbers, Mech. Mach. Theory, 125(2018), 101–110.
  • Fike, J.A., Alonso, J.J., Automatic differentiation through the use of hyper-dual numbers for second derivatives, Lecture Notes in ComputationalScience and Engineering book series (LNCSE), 87(2011), 163–173.
  • Gökbaş, H. A new family of number sequences: Leonardo-Alwyn numbers, Armenian Journal of Mathematics, 15(6)(2023), 1–13.
  • Horadam, A. F., Generating functions for powers of a certain generalised sequence of numbers, Duke Mathematical Journal, 32(3)(1965), 437–446.
  • Horadam, A.F. Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly, 3(3)(1965), 161–176.
  • Horadam, A.F. Special properties of the sequence Wn(a, b; p, q), The Fibonacci Quarterly, 5(5)(1967), 424–434.
  • Kantor, I., Solodovnikov, A., Hypercomplex Numbers. Springer-Verlag, New York, 1989.
  • Karatas, A., On complex Leonardo numbers, Notes on Number Theory and Discrete Mathematics, 28(3)(2022), 458–465.
  • Karakuş, S.Ö ., Nurkan, S.K., Turan, M., Hyper-dual Leonardo numbers, Konuralp Journal of Mathematics, 10(2)(2022), 269–275.
  • Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, New York, 2001.
  • Kuhapatanakul, K., Chobsorn, J. On the generalized Leonardo numbers, Integers, 22 (2022).
  • Nurkan, S.K., Güven, İ.A., Ordered Leonardo quadruple numbers, Symmetry, 15(1)(2023), 149.
  • Özimamoğlu, H., A new generalization of Leonardo hybrid numbers with q-integers, Indian Journal of Pure and Applied Mathematics, (2023).
  • Pennestr`ı, E., Stefanelli, R., Linear algebra and numerical algorithms using dual numbers, Multibody Syst. Dyn., 18(2007), 323–344.
  • Shannon, A.G., Deveci, O¨ ., A note on generalized and extended Leonardo sequences, Notes on Number Theory and Discrete Mathematics, 28(1)(2022), 109–114.
  • Soykan, Y. Special cases of generalized Leonardo numbers: modified p-Leonardo, p-Leonardo-Lucas and p-Leonardo Numbers, Earthline Journal of Mathematical Sciences, 11(2)(2023), 317–342.
  • Study, E., Geometrie der dynamen: Die Zusammensetzung von Kr¨aften und Verwandte Gegenst¨ande der Geometrie Bearb., Leipzig, B.G. Teubner. 1903.
  • Tan, E., Leung, H.H., On Leonardo p-numbers, Integers, 23(2023).
  • Yaglom, I.M., A Simple Non-Euclidean Geometry and Its Physical Basis, Springer-Verlag, New York, 1979.
  • Yilmaz, Ç.Z., Saçlı, G.Y., On dual quaternions with k- generalized Leonardo components, Journal of New Theory, 44(2023), 31–42.
There are 23 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Gülsüm Yeliz Saçlı 0000-0002-8647-1801

Salim Yüce 0000-0002-8296-6495

Project Number -
Publication Date June 30, 2024
Published in Issue Year 2024

Cite

APA Saçlı, G. Y., & Yüce, S. (2024). A Note on Hyper-Dual Numbers with the Leonardo-Alwyn Sequence. Turkish Journal of Mathematics and Computer Science, 16(1), 154-161. https://doi.org/10.47000/tjmcs.1344439
AMA Saçlı GY, Yüce S. A Note on Hyper-Dual Numbers with the Leonardo-Alwyn Sequence. TJMCS. June 2024;16(1):154-161. doi:10.47000/tjmcs.1344439
Chicago Saçlı, Gülsüm Yeliz, and Salim Yüce. “A Note on Hyper-Dual Numbers With the Leonardo-Alwyn Sequence”. Turkish Journal of Mathematics and Computer Science 16, no. 1 (June 2024): 154-61. https://doi.org/10.47000/tjmcs.1344439.
EndNote Saçlı GY, Yüce S (June 1, 2024) A Note on Hyper-Dual Numbers with the Leonardo-Alwyn Sequence. Turkish Journal of Mathematics and Computer Science 16 1 154–161.
IEEE G. Y. Saçlı and S. Yüce, “A Note on Hyper-Dual Numbers with the Leonardo-Alwyn Sequence”, TJMCS, vol. 16, no. 1, pp. 154–161, 2024, doi: 10.47000/tjmcs.1344439.
ISNAD Saçlı, Gülsüm Yeliz - Yüce, Salim. “A Note on Hyper-Dual Numbers With the Leonardo-Alwyn Sequence”. Turkish Journal of Mathematics and Computer Science 16/1 (June 2024), 154-161. https://doi.org/10.47000/tjmcs.1344439.
JAMA Saçlı GY, Yüce S. A Note on Hyper-Dual Numbers with the Leonardo-Alwyn Sequence. TJMCS. 2024;16:154–161.
MLA Saçlı, Gülsüm Yeliz and Salim Yüce. “A Note on Hyper-Dual Numbers With the Leonardo-Alwyn Sequence”. Turkish Journal of Mathematics and Computer Science, vol. 16, no. 1, 2024, pp. 154-61, doi:10.47000/tjmcs.1344439.
Vancouver Saçlı GY, Yüce S. A Note on Hyper-Dual Numbers with the Leonardo-Alwyn Sequence. TJMCS. 2024;16(1):154-61.