Budak, H., Sarikaya, M.Z., An inequality of Ostrowski-Grüss type for double integrals, Stud. Univ. Babes-Bolyai Math, 62(2017), 163-173.
Budak, H., Sarikaya, M.Z., On weighted Grüss type inequalities for double integrals, Commun. Fac. Sci. Univ. Ank. Series A1, 66(2)(2017), 53-61.
Çelik, B., Set, E., Akdemir, A.O., Mixed conformable fractional grüss type inequalities, www.researchgate.net, (2019).
Dragomir, S.S., Some integral inequalities of Grüss type, Indian Journal of Pure and Applied Mathematics, 31(4)(2002), 397-415.
Dragomir, S.S., A companion of the Grüüss inequality and applications, Applied Mathematics Letters, 17(4)(2004), 429-435.
Grüss, G., Uber das maximum des absoluten Betrages von \begin{equation*}
\frac{1}{b-a}\int\nolimits_{a}^{b}f(x)g(x)dx-\frac{1}{(b-a)^{2}}%
\int\nolimits_{a}^{b}f(x)dx\int\nolimits_{a}^{b}g(x)dx
\end{equation*} Mathematische Zeitschrift, 39(1935), 215-226.
Jarad, F., Ugurlu, E., Abdeljawad, T., Baleanu, D. , On a new class of fractional operators, Advances in Difference Equations, 247(2017).
Jarad, F., Abdeljawad, T., Generalized fractional derivatives and Laplace transforms, Discrete and Continuous Dynamical Systems: Series S, 13(3)(2020), 709-722.
Kaçar, E., Kaçar, Z., Yıldırım, H., Integral inequalities for Riemann-Liouville fractional integrals of a function with respect to another function, Iranian Journal of Mathematical Sciences and Informatics, 13(1)(2018), 1-13.
Kilbas, A., Srivastava, M.H., Trujillo, J.J., Theory and Application of Fractional Differential Equations, North Holland Mathematics Studies, 2006.
Tariboon, J., Ntouyas, S.K., Sudsutad, W., Some new Riemann-Liouville fractional integral inequalities, Int. J. Math. Math. Sci., (2014), Article ID 869434, 1-6.
Grüss Type Integral Inequalities For Generalized $\eta -$ Conformable Fractional Integrals
Our aim in this paper is to establish new $\eta -$conformable fractional integral. For this purpose new inequalities are obtained by using generalized $\eta -$conformable fractional integral with the help of Grüss type integrals. The inequalities that exist in the literature are obtained in case of some special choices, which shows that the inequality we achieve is a more general inequality.
Budak, H., Sarikaya, M.Z., An inequality of Ostrowski-Grüss type for double integrals, Stud. Univ. Babes-Bolyai Math, 62(2017), 163-173.
Budak, H., Sarikaya, M.Z., On weighted Grüss type inequalities for double integrals, Commun. Fac. Sci. Univ. Ank. Series A1, 66(2)(2017), 53-61.
Çelik, B., Set, E., Akdemir, A.O., Mixed conformable fractional grüss type inequalities, www.researchgate.net, (2019).
Dragomir, S.S., Some integral inequalities of Grüss type, Indian Journal of Pure and Applied Mathematics, 31(4)(2002), 397-415.
Dragomir, S.S., A companion of the Grüüss inequality and applications, Applied Mathematics Letters, 17(4)(2004), 429-435.
Grüss, G., Uber das maximum des absoluten Betrages von \begin{equation*}
\frac{1}{b-a}\int\nolimits_{a}^{b}f(x)g(x)dx-\frac{1}{(b-a)^{2}}%
\int\nolimits_{a}^{b}f(x)dx\int\nolimits_{a}^{b}g(x)dx
\end{equation*} Mathematische Zeitschrift, 39(1935), 215-226.
Jarad, F., Ugurlu, E., Abdeljawad, T., Baleanu, D. , On a new class of fractional operators, Advances in Difference Equations, 247(2017).
Jarad, F., Abdeljawad, T., Generalized fractional derivatives and Laplace transforms, Discrete and Continuous Dynamical Systems: Series S, 13(3)(2020), 709-722.
Kaçar, E., Kaçar, Z., Yıldırım, H., Integral inequalities for Riemann-Liouville fractional integrals of a function with respect to another function, Iranian Journal of Mathematical Sciences and Informatics, 13(1)(2018), 1-13.
Kilbas, A., Srivastava, M.H., Trujillo, J.J., Theory and Application of Fractional Differential Equations, North Holland Mathematics Studies, 2006.
Tariboon, J., Ntouyas, S.K., Sudsutad, W., Some new Riemann-Liouville fractional integral inequalities, Int. J. Math. Math. Sci., (2014), Article ID 869434, 1-6.
Kılınç, S., & Yıldırım, H. (2022). Grüss Type Integral Inequalities For Generalized $\eta -$ Conformable Fractional Integrals. Turkish Journal of Mathematics and Computer Science, 14(1), 201-211. https://doi.org/10.47000/tjmcs.816174
AMA
Kılınç S, Yıldırım H. Grüss Type Integral Inequalities For Generalized $\eta -$ Conformable Fractional Integrals. TJMCS. June 2022;14(1):201-211. doi:10.47000/tjmcs.816174
Chicago
Kılınç, Seda, and Hüseyin Yıldırım. “Grüss Type Integral Inequalities For Generalized $\eta -$ Conformable Fractional Integrals”. Turkish Journal of Mathematics and Computer Science 14, no. 1 (June 2022): 201-11. https://doi.org/10.47000/tjmcs.816174.
EndNote
Kılınç S, Yıldırım H (June 1, 2022) Grüss Type Integral Inequalities For Generalized $\eta -$ Conformable Fractional Integrals. Turkish Journal of Mathematics and Computer Science 14 1 201–211.
IEEE
S. Kılınç and H. Yıldırım, “Grüss Type Integral Inequalities For Generalized $\eta -$ Conformable Fractional Integrals”, TJMCS, vol. 14, no. 1, pp. 201–211, 2022, doi: 10.47000/tjmcs.816174.
ISNAD
Kılınç, Seda - Yıldırım, Hüseyin. “Grüss Type Integral Inequalities For Generalized $\eta -$ Conformable Fractional Integrals”. Turkish Journal of Mathematics and Computer Science 14/1 (June 2022), 201-211. https://doi.org/10.47000/tjmcs.816174.
JAMA
Kılınç S, Yıldırım H. Grüss Type Integral Inequalities For Generalized $\eta -$ Conformable Fractional Integrals. TJMCS. 2022;14:201–211.
MLA
Kılınç, Seda and Hüseyin Yıldırım. “Grüss Type Integral Inequalities For Generalized $\eta -$ Conformable Fractional Integrals”. Turkish Journal of Mathematics and Computer Science, vol. 14, no. 1, 2022, pp. 201-1, doi:10.47000/tjmcs.816174.
Vancouver
Kılınç S, Yıldırım H. Grüss Type Integral Inequalities For Generalized $\eta -$ Conformable Fractional Integrals. TJMCS. 2022;14(1):201-1.