[1] Bektas¸, M., Yilmaz, M.Y., (k;m)-type Slant helices for partially null and pseudo null curves in Minkowski space $\mathbb{E}^{4}$, Applied Mathematics and Nonlinear Sciences, Mathematica, 5(1)(2020), 515–520.
[2] Bishop, R.L., There is more than one way to frame a curve, Amer. Math. Monthly, 82(1975), 246–251.
[3] Bulut, F., Bektas¸, M., Special helices on equiform differential geometry of spacelike curves in Minkowski space-time, Commun. Fac.Sci.Univ.Ank.Ser. A1 Math. Stat., 69(2)(2020), 51–62.
[4] Gökçelik, F., Gök, İ., Ekmekci, F.N., Yayli, Y., Characterizations of inclined curves according to parallel transport frame in $\mathbb{E}^{4}$ and bishop frame in $\mathbb{E}^{3}$, Konuralp Journal of Mathematics, 7(1)(2019), 16–24.
[5] Hacisalihoğlu, H.H., Diferensiyel Geometri, İnönü Üniversitesi Fen Edebiyat Fakultesi Yayınları (In Turkish), 1983.
[7] Izumiya, S., Takeuchi, N., New special curves and developable surfaces, Turk. J. Math., 28(2004), 153–164.
[8] Soliman, M.A., Abdel-All, N.H., Hussien, R.A., Youssef, T., Evolution of space curves using type-3 Bishop frame, CJMS., 8(1)(2019), 58–73.
[9] Yılmaz, M.Y., Bektas¸, M., Slant helices of (k,m)-type in $\mathbb{E}^{4}$, Acta Univ. Sapientiae, Mathematica, 10(2)(2018), 395–401.
[10] Yılmaz, S., Turgut, M., A new version of Bishop frame and an application to spherical images, J. Math. Anal. Appl., 371(2010), 764–776.
[11] Yılmaz, S., Turgut, M., On the characterizations of inclined curves in Minkowski space-time $\mathbb{E}_{1}^{4}$, International Mathematical Forum, 3(16)(2008), 783–792.
(k,m)-type Slant Helices According to Parallel Transport Frame in Euclidean 4-Space
In this work, we describe a Frenet frame in 4-dimensional Euclidean space and call this frame as parallel transport frame (PTF). PTF is an alternative approach to defining a moving frame. This frame is obtained by rotating the tangent vector and the first binormal vector of a unit speed curve by an euler angle and then we give curvature functions according to PTF of the curve. Also, we introduce $(k,m)$-type slant helices according to PTF in Euclidean 4-Space. Additionally, we obtain the characterization of slant helices according to this frame in $\mathbb{E}^{4}$ and give an example of our main result.
[1] Bektas¸, M., Yilmaz, M.Y., (k;m)-type Slant helices for partially null and pseudo null curves in Minkowski space $\mathbb{E}^{4}$, Applied Mathematics and Nonlinear Sciences, Mathematica, 5(1)(2020), 515–520.
[2] Bishop, R.L., There is more than one way to frame a curve, Amer. Math. Monthly, 82(1975), 246–251.
[3] Bulut, F., Bektas¸, M., Special helices on equiform differential geometry of spacelike curves in Minkowski space-time, Commun. Fac.Sci.Univ.Ank.Ser. A1 Math. Stat., 69(2)(2020), 51–62.
[4] Gökçelik, F., Gök, İ., Ekmekci, F.N., Yayli, Y., Characterizations of inclined curves according to parallel transport frame in $\mathbb{E}^{4}$ and bishop frame in $\mathbb{E}^{3}$, Konuralp Journal of Mathematics, 7(1)(2019), 16–24.
[5] Hacisalihoğlu, H.H., Diferensiyel Geometri, İnönü Üniversitesi Fen Edebiyat Fakultesi Yayınları (In Turkish), 1983.
[7] Izumiya, S., Takeuchi, N., New special curves and developable surfaces, Turk. J. Math., 28(2004), 153–164.
[8] Soliman, M.A., Abdel-All, N.H., Hussien, R.A., Youssef, T., Evolution of space curves using type-3 Bishop frame, CJMS., 8(1)(2019), 58–73.
[9] Yılmaz, M.Y., Bektas¸, M., Slant helices of (k,m)-type in $\mathbb{E}^{4}$, Acta Univ. Sapientiae, Mathematica, 10(2)(2018), 395–401.
[10] Yılmaz, S., Turgut, M., A new version of Bishop frame and an application to spherical images, J. Math. Anal. Appl., 371(2010), 764–776.
[11] Yılmaz, S., Turgut, M., On the characterizations of inclined curves in Minkowski space-time $\mathbb{E}_{1}^{4}$, International Mathematical Forum, 3(16)(2008), 783–792.
Bulut, F., & Tartık, F. (2021). (k,m)-type Slant Helices According to Parallel Transport Frame in Euclidean 4-Space. Turkish Journal of Mathematics and Computer Science, 13(2), 261-269. https://doi.org/10.47000/tjmcs.858489
AMA
Bulut F, Tartık F. (k,m)-type Slant Helices According to Parallel Transport Frame in Euclidean 4-Space. TJMCS. December 2021;13(2):261-269. doi:10.47000/tjmcs.858489
Chicago
Bulut, Fatma, and Feyzi Tartık. “(k,m)-Type Slant Helices According to Parallel Transport Frame in Euclidean 4-Space”. Turkish Journal of Mathematics and Computer Science 13, no. 2 (December 2021): 261-69. https://doi.org/10.47000/tjmcs.858489.
EndNote
Bulut F, Tartık F (December 1, 2021) (k,m)-type Slant Helices According to Parallel Transport Frame in Euclidean 4-Space. Turkish Journal of Mathematics and Computer Science 13 2 261–269.
IEEE
F. Bulut and F. Tartık, “(k,m)-type Slant Helices According to Parallel Transport Frame in Euclidean 4-Space”, TJMCS, vol. 13, no. 2, pp. 261–269, 2021, doi: 10.47000/tjmcs.858489.
ISNAD
Bulut, Fatma - Tartık, Feyzi. “(k,m)-Type Slant Helices According to Parallel Transport Frame in Euclidean 4-Space”. Turkish Journal of Mathematics and Computer Science 13/2 (December 2021), 261-269. https://doi.org/10.47000/tjmcs.858489.
JAMA
Bulut F, Tartık F. (k,m)-type Slant Helices According to Parallel Transport Frame in Euclidean 4-Space. TJMCS. 2021;13:261–269.
MLA
Bulut, Fatma and Feyzi Tartık. “(k,m)-Type Slant Helices According to Parallel Transport Frame in Euclidean 4-Space”. Turkish Journal of Mathematics and Computer Science, vol. 13, no. 2, 2021, pp. 261-9, doi:10.47000/tjmcs.858489.
Vancouver
Bulut F, Tartık F. (k,m)-type Slant Helices According to Parallel Transport Frame in Euclidean 4-Space. TJMCS. 2021;13(2):261-9.