Research Article
BibTex RIS Cite

Almost Contraction Mappings and $(S,T)$-Stability of Jungck Iteration in Cone Metric Spaces over Banach Algebras

Year 2023, , 35 - 41, 30.06.2023
https://doi.org/10.47000/tjmcs.961439

Abstract

In this work, we first introduce almost contraction mappings for a pair of two mappings in cone metric spaces over Banach algebras (CMSBA). Then, we observe that the class of such mappings in this setting contains those of many well known mappings. Finally, we prove some fixed point theorems, and obtain $(S,T)$-stability results of Jungck iterations for some mappings in CMSBA.

References

  • Abbas, M., Jungck, G., Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 341(2008), 416–420.
  • Berinde, V. ,Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, 9(2004), 43–53.
  • Develi, F., Ozavsar, M., Almost contraction mappings in cone b-metric spaces over Banach algebras, Hacettepe J. Math. Stat., 49(2020), 1965–1973.
  • Hardy, G.E., Rogers, T.D., A generalization of a fixed point theorem of Reich, Canad. Math. Bull., 16(1973), 201–206.
  • Harder, A.M., Hicks, T.L., Stability results for fixed point iteration procedure, Math. Japonica, 33(1988), 693–706.
  • Huang, L.G., Zhang, X., Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332(2007), 1468–1476.
  • Huang, H., Radenovic S., Common fixed point theorems of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras andapplications, J. Non. Sci. Appl., 8(2015), 787–799.
  • Huang, H., Xu, S., Liu, H., Radenovic, S., Fixed point theorems and T -stability of Picard iteration for generalized Lipschitz mappings in conemetric spaces over Banach algebras, J. Comput. Anal. Appl., 20(2016), 869–888.
  • Huang, H., Deng, G., Radenovic S., Some topological properties and fixed point results in cone metric spaces over Banach algebras, Positivity, 23(2019), 21–34.
  • Jungck, G., Commuting mappings and fixed points, Amer. Math. Monthly, 83(1976), 261–263.
  • Jungck, G., Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci., 4 (1996), 199–215.
  • Jankovic, S., Kadelburg, Z., Radenovic, S., On cone metric spaces: a survey, Nonlinear Anal., 74 (2011), 2591–2601.
  • Kadelburg, Z., Radenovic, S.,A note on various types of cones and fixed point results in cone metric spaces, Asian J. Math. Appl., 2013, ArticleID ama0104, 7 pages.
  • Liu, H., Xu, S., Cone metric spaces with Banach algebras and Fixed point theorems of generalized Lipschitz mappings, Fixed Point TheoryAppl., 2013(2013), 1–10.
  • Ozavsar, M., Fixed point theorems for (k,l)-almost contractions in cone metric spaces over Banach algebras, Mathematical Advances in Pure and Applied Sciences, 1(2018), 46–51.
  • Osilike, M.N.,Stability results for fixed point iteration procedures, J. Nigerian Math. Soc., 14(1995), 17–29.
  • Rudin, W., Functional Analysis. 2ndedn., McGraw-Hill, New York, 1991.
  • Singh, S.L., Bhatnagar, C., Mıshra, S.N., Stability of Jungck-type iterative procedures, Int. J. Math. Math. Sci., 2005(2005), 3035–3043.
  • Xu, S., Radenovic, S., Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality, Fixed Point Theory Appl., 2014(2014), 1–12.
Year 2023, , 35 - 41, 30.06.2023
https://doi.org/10.47000/tjmcs.961439

Abstract

References

  • Abbas, M., Jungck, G., Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl., 341(2008), 416–420.
  • Berinde, V. ,Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, 9(2004), 43–53.
  • Develi, F., Ozavsar, M., Almost contraction mappings in cone b-metric spaces over Banach algebras, Hacettepe J. Math. Stat., 49(2020), 1965–1973.
  • Hardy, G.E., Rogers, T.D., A generalization of a fixed point theorem of Reich, Canad. Math. Bull., 16(1973), 201–206.
  • Harder, A.M., Hicks, T.L., Stability results for fixed point iteration procedure, Math. Japonica, 33(1988), 693–706.
  • Huang, L.G., Zhang, X., Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332(2007), 1468–1476.
  • Huang, H., Radenovic S., Common fixed point theorems of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras andapplications, J. Non. Sci. Appl., 8(2015), 787–799.
  • Huang, H., Xu, S., Liu, H., Radenovic, S., Fixed point theorems and T -stability of Picard iteration for generalized Lipschitz mappings in conemetric spaces over Banach algebras, J. Comput. Anal. Appl., 20(2016), 869–888.
  • Huang, H., Deng, G., Radenovic S., Some topological properties and fixed point results in cone metric spaces over Banach algebras, Positivity, 23(2019), 21–34.
  • Jungck, G., Commuting mappings and fixed points, Amer. Math. Monthly, 83(1976), 261–263.
  • Jungck, G., Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci., 4 (1996), 199–215.
  • Jankovic, S., Kadelburg, Z., Radenovic, S., On cone metric spaces: a survey, Nonlinear Anal., 74 (2011), 2591–2601.
  • Kadelburg, Z., Radenovic, S.,A note on various types of cones and fixed point results in cone metric spaces, Asian J. Math. Appl., 2013, ArticleID ama0104, 7 pages.
  • Liu, H., Xu, S., Cone metric spaces with Banach algebras and Fixed point theorems of generalized Lipschitz mappings, Fixed Point TheoryAppl., 2013(2013), 1–10.
  • Ozavsar, M., Fixed point theorems for (k,l)-almost contractions in cone metric spaces over Banach algebras, Mathematical Advances in Pure and Applied Sciences, 1(2018), 46–51.
  • Osilike, M.N.,Stability results for fixed point iteration procedures, J. Nigerian Math. Soc., 14(1995), 17–29.
  • Rudin, W., Functional Analysis. 2ndedn., McGraw-Hill, New York, 1991.
  • Singh, S.L., Bhatnagar, C., Mıshra, S.N., Stability of Jungck-type iterative procedures, Int. J. Math. Math. Sci., 2005(2005), 3035–3043.
  • Xu, S., Radenovic, S., Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality, Fixed Point Theory Appl., 2014(2014), 1–12.
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Faruk Develi 0000-0003-4447-3582

Muttalip Özavsar 0000-0003-1471-6774

Publication Date June 30, 2023
Published in Issue Year 2023

Cite

APA Develi, F., & Özavsar, M. (2023). Almost Contraction Mappings and $(S,T)$-Stability of Jungck Iteration in Cone Metric Spaces over Banach Algebras. Turkish Journal of Mathematics and Computer Science, 15(1), 35-41. https://doi.org/10.47000/tjmcs.961439
AMA Develi F, Özavsar M. Almost Contraction Mappings and $(S,T)$-Stability of Jungck Iteration in Cone Metric Spaces over Banach Algebras. TJMCS. June 2023;15(1):35-41. doi:10.47000/tjmcs.961439
Chicago Develi, Faruk, and Muttalip Özavsar. “Almost Contraction Mappings and $(S,T)$-Stability of Jungck Iteration in Cone Metric Spaces over Banach Algebras”. Turkish Journal of Mathematics and Computer Science 15, no. 1 (June 2023): 35-41. https://doi.org/10.47000/tjmcs.961439.
EndNote Develi F, Özavsar M (June 1, 2023) Almost Contraction Mappings and $(S,T)$-Stability of Jungck Iteration in Cone Metric Spaces over Banach Algebras. Turkish Journal of Mathematics and Computer Science 15 1 35–41.
IEEE F. Develi and M. Özavsar, “Almost Contraction Mappings and $(S,T)$-Stability of Jungck Iteration in Cone Metric Spaces over Banach Algebras”, TJMCS, vol. 15, no. 1, pp. 35–41, 2023, doi: 10.47000/tjmcs.961439.
ISNAD Develi, Faruk - Özavsar, Muttalip. “Almost Contraction Mappings and $(S,T)$-Stability of Jungck Iteration in Cone Metric Spaces over Banach Algebras”. Turkish Journal of Mathematics and Computer Science 15/1 (June 2023), 35-41. https://doi.org/10.47000/tjmcs.961439.
JAMA Develi F, Özavsar M. Almost Contraction Mappings and $(S,T)$-Stability of Jungck Iteration in Cone Metric Spaces over Banach Algebras. TJMCS. 2023;15:35–41.
MLA Develi, Faruk and Muttalip Özavsar. “Almost Contraction Mappings and $(S,T)$-Stability of Jungck Iteration in Cone Metric Spaces over Banach Algebras”. Turkish Journal of Mathematics and Computer Science, vol. 15, no. 1, 2023, pp. 35-41, doi:10.47000/tjmcs.961439.
Vancouver Develi F, Özavsar M. Almost Contraction Mappings and $(S,T)$-Stability of Jungck Iteration in Cone Metric Spaces over Banach Algebras. TJMCS. 2023;15(1):35-41.