Green’s Function of Regular Sturm-Liouville Problem Having Eigenparameter in One Boundary Condition
Year 2016,
Volume: 4 , 1 - 9, 13.07.2016
Haskız Coşkun
Ayşe Kabataş
Abstract
In this paper we obtain Green’s function for regular Sturm-Liouville problem having the eigenparameter in the quadratic boundary condition without smoothness conditions on the potential.
References
- Annaby, M. H., Tharwat, M. M., On sampling theory and eigenvalue problems with an eigenparameter in the boundary conditions, Science University of Tokyo Journal of Mathematics, 42(2006), 157–176.
- Coşkun, H., Harris, B. J., Estimates for the periodic and semi-periodic eigenvalues of Hill’s equation, Proc. Roy. Soc. Edinburgh Sect. A, 130(2000), 991–998.
- Coşkun, H., Asymptotic approximations of eigenvalues and eigenfunctions for regular Sturm-Liouville problems, Rocky Mountain J. Math, 36(2006), 867–883.
- Coşkun, H., Başkaya, E., Asymptotics of the eigenvalues of regular Sturm-Liouville problems with eigenvalue parameter in the boundary condition for integrable potential, Math. Scand., 107(2010), 209–223.
- Coşkun, H., Kabataş, A., Asymptotic approximations of eigenfunctions for regular Sturm-Liouville problems with eigenvalue parameter in the boundary condition for integrable potential, Math. Scand., 113(2013), 143–160.
- Fulton, C. T., Two point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. Roy. Soc. Edin. A., 77(1977), 293–308.
- Harris, B. J., The form of the spectral functions associated with Sturm-Liouville problems with continuous spectrum, Mathematika, 44(1997), 149–161.
Year 2016,
Volume: 4 , 1 - 9, 13.07.2016
Haskız Coşkun
Ayşe Kabataş
References
- Annaby, M. H., Tharwat, M. M., On sampling theory and eigenvalue problems with an eigenparameter in the boundary conditions, Science University of Tokyo Journal of Mathematics, 42(2006), 157–176.
- Coşkun, H., Harris, B. J., Estimates for the periodic and semi-periodic eigenvalues of Hill’s equation, Proc. Roy. Soc. Edinburgh Sect. A, 130(2000), 991–998.
- Coşkun, H., Asymptotic approximations of eigenvalues and eigenfunctions for regular Sturm-Liouville problems, Rocky Mountain J. Math, 36(2006), 867–883.
- Coşkun, H., Başkaya, E., Asymptotics of the eigenvalues of regular Sturm-Liouville problems with eigenvalue parameter in the boundary condition for integrable potential, Math. Scand., 107(2010), 209–223.
- Coşkun, H., Kabataş, A., Asymptotic approximations of eigenfunctions for regular Sturm-Liouville problems with eigenvalue parameter in the boundary condition for integrable potential, Math. Scand., 113(2013), 143–160.
- Fulton, C. T., Two point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. Roy. Soc. Edin. A., 77(1977), 293–308.
- Harris, B. J., The form of the spectral functions associated with Sturm-Liouville problems with continuous spectrum, Mathematika, 44(1997), 149–161.