Research Article
BibTex RIS Cite

Steinhaus' Problem on Partition of a Hyperbolic Triangle

Year 2018, Volume: 9, 98 - 102, 28.12.2018

Abstract

Hugo Steinhaus ([1],[2]) has asked whether inside each acute triangle there is a point from which perpendiculars to the sides divide the triangle into three parts of equal areas. In this paper, we present a solution of this problem in the Poincaré disc model of hyperbolic geometry.

References

  • Ahlfors, L., Complex analysis: An introduction to the theory of analytic functions of one complex variable, Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York, 1978.
  • Beardon, A.F., The Geometry of Discrete Groups, vol. 91 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1983.
  • Ehrmann, J.P., Constructive solution of a generalization of Steinhaus’ problem on partition of a triangle, Forum Geom., 7(2007), 187–190.
  • Ehrmann, J.P., On an affine variant of a Steinhaus’ problem, Forum Geom., 8(2008), 1–5.
  • Steinhaus, H., Problem No. 132 (in Polish), Roczniki Polskiego Towarzystwa Matematycznego (Annales Societatis Mathematicae Polonae), Seria II, Wiadomosci Matematyczne, 9(1966), 99.
  • Steinhaus, H., Problem No. 779 (in Polish), Matematyka, 19(1966), 92. Tyszka, A., Steinhaus’ problem cannot be solved with ruler and compass alone (in Polish), Matematyka, 49(1996), 238–240.
  • Tyszka, A., Steinhaus’ problem on partition of a triangle, Forum Geom., 7(2007), 181–185.
Year 2018, Volume: 9, 98 - 102, 28.12.2018

Abstract

References

  • Ahlfors, L., Complex analysis: An introduction to the theory of analytic functions of one complex variable, Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York, 1978.
  • Beardon, A.F., The Geometry of Discrete Groups, vol. 91 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1983.
  • Ehrmann, J.P., Constructive solution of a generalization of Steinhaus’ problem on partition of a triangle, Forum Geom., 7(2007), 187–190.
  • Ehrmann, J.P., On an affine variant of a Steinhaus’ problem, Forum Geom., 8(2008), 1–5.
  • Steinhaus, H., Problem No. 132 (in Polish), Roczniki Polskiego Towarzystwa Matematycznego (Annales Societatis Mathematicae Polonae), Seria II, Wiadomosci Matematyczne, 9(1966), 99.
  • Steinhaus, H., Problem No. 779 (in Polish), Matematyka, 19(1966), 92. Tyszka, A., Steinhaus’ problem cannot be solved with ruler and compass alone (in Polish), Matematyka, 49(1996), 238–240.
  • Tyszka, A., Steinhaus’ problem on partition of a triangle, Forum Geom., 7(2007), 181–185.
There are 7 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Oğuzhan Demirel

Publication Date December 28, 2018
Published in Issue Year 2018 Volume: 9

Cite

APA Demirel, O. (2018). Steinhaus’ Problem on Partition of a Hyperbolic Triangle. Turkish Journal of Mathematics and Computer Science, 9, 98-102.
AMA Demirel O. Steinhaus’ Problem on Partition of a Hyperbolic Triangle. TJMCS. December 2018;9:98-102.
Chicago Demirel, Oğuzhan. “Steinhaus’ Problem on Partition of a Hyperbolic Triangle”. Turkish Journal of Mathematics and Computer Science 9, December (December 2018): 98-102.
EndNote Demirel O (December 1, 2018) Steinhaus’ Problem on Partition of a Hyperbolic Triangle. Turkish Journal of Mathematics and Computer Science 9 98–102.
IEEE O. Demirel, “Steinhaus’ Problem on Partition of a Hyperbolic Triangle”, TJMCS, vol. 9, pp. 98–102, 2018.
ISNAD Demirel, Oğuzhan. “Steinhaus’ Problem on Partition of a Hyperbolic Triangle”. Turkish Journal of Mathematics and Computer Science 9 (December 2018), 98-102.
JAMA Demirel O. Steinhaus’ Problem on Partition of a Hyperbolic Triangle. TJMCS. 2018;9:98–102.
MLA Demirel, Oğuzhan. “Steinhaus’ Problem on Partition of a Hyperbolic Triangle”. Turkish Journal of Mathematics and Computer Science, vol. 9, 2018, pp. 98-102.
Vancouver Demirel O. Steinhaus’ Problem on Partition of a Hyperbolic Triangle. TJMCS. 2018;9:98-102.