Hugo Steinhaus ([1],[2]) has asked whether inside each acute triangle there is a point from which perpendiculars to the sides divide the triangle into three parts of equal areas. In this paper, we present a solution of this problem in the Poincaré disc model of hyperbolic geometry.
Ahlfors, L., Complex analysis: An introduction to the theory of analytic functions of one complex variable, Third edition. International Series
in Pure and Applied Mathematics. McGraw-Hill Book Co., New York, 1978.
Beardon, A.F., The Geometry of Discrete Groups, vol. 91 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1983.
Ehrmann, J.P., Constructive solution of a generalization of Steinhaus’ problem on partition of a triangle, Forum Geom., 7(2007), 187–190.
Ehrmann, J.P., On an affine variant of a Steinhaus’ problem, Forum Geom., 8(2008), 1–5.
Steinhaus, H., Problem No. 132 (in Polish), Roczniki Polskiego Towarzystwa Matematycznego (Annales Societatis Mathematicae Polonae),
Seria II, Wiadomosci Matematyczne, 9(1966), 99.
Steinhaus, H., Problem No. 779 (in Polish), Matematyka, 19(1966), 92.
Tyszka, A., Steinhaus’ problem cannot be solved with ruler and compass alone (in Polish), Matematyka, 49(1996), 238–240.
Tyszka, A., Steinhaus’ problem on partition of a triangle, Forum Geom., 7(2007), 181–185.
Ahlfors, L., Complex analysis: An introduction to the theory of analytic functions of one complex variable, Third edition. International Series
in Pure and Applied Mathematics. McGraw-Hill Book Co., New York, 1978.
Beardon, A.F., The Geometry of Discrete Groups, vol. 91 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1983.
Ehrmann, J.P., Constructive solution of a generalization of Steinhaus’ problem on partition of a triangle, Forum Geom., 7(2007), 187–190.
Ehrmann, J.P., On an affine variant of a Steinhaus’ problem, Forum Geom., 8(2008), 1–5.
Steinhaus, H., Problem No. 132 (in Polish), Roczniki Polskiego Towarzystwa Matematycznego (Annales Societatis Mathematicae Polonae),
Seria II, Wiadomosci Matematyczne, 9(1966), 99.
Steinhaus, H., Problem No. 779 (in Polish), Matematyka, 19(1966), 92.
Tyszka, A., Steinhaus’ problem cannot be solved with ruler and compass alone (in Polish), Matematyka, 49(1996), 238–240.
Tyszka, A., Steinhaus’ problem on partition of a triangle, Forum Geom., 7(2007), 181–185.
Demirel, O. (2018). Steinhaus’ Problem on Partition of a Hyperbolic Triangle. Turkish Journal of Mathematics and Computer Science, 9, 98-102.
AMA
Demirel O. Steinhaus’ Problem on Partition of a Hyperbolic Triangle. TJMCS. December 2018;9:98-102.
Chicago
Demirel, Oğuzhan. “Steinhaus’ Problem on Partition of a Hyperbolic Triangle”. Turkish Journal of Mathematics and Computer Science 9, December (December 2018): 98-102.
EndNote
Demirel O (December 1, 2018) Steinhaus’ Problem on Partition of a Hyperbolic Triangle. Turkish Journal of Mathematics and Computer Science 9 98–102.
IEEE
O. Demirel, “Steinhaus’ Problem on Partition of a Hyperbolic Triangle”, TJMCS, vol. 9, pp. 98–102, 2018.
ISNAD
Demirel, Oğuzhan. “Steinhaus’ Problem on Partition of a Hyperbolic Triangle”. Turkish Journal of Mathematics and Computer Science 9 (December 2018), 98-102.
JAMA
Demirel O. Steinhaus’ Problem on Partition of a Hyperbolic Triangle. TJMCS. 2018;9:98–102.
MLA
Demirel, Oğuzhan. “Steinhaus’ Problem on Partition of a Hyperbolic Triangle”. Turkish Journal of Mathematics and Computer Science, vol. 9, 2018, pp. 98-102.
Vancouver
Demirel O. Steinhaus’ Problem on Partition of a Hyperbolic Triangle. TJMCS. 2018;9:98-102.