Research Article
BibTex RIS Cite

Comparative Study of Algebraic Wall Model and Differential Equation Wall Model in Large Eddy Simulation of Turbulent Channel Flow

Year 2018, Volume: 9, 80 - 90, 28.12.2018

Abstract



A large eddy simulation
(LES) is performed in a plane turbulent channel flow, where the near wall
region is approximated by algebraic wall model (AWM) and differential equation
wall model (DEWM). The simulation is performed by using a finite difference
method of second order accuracy in space and a low-storage explicit Runge-Kutta
method with third order accuracy in time. The computational results are
compared with those from direct numerical simulation (DNS) data. Comparing the
results throughout the calculation domain we have found that the results from
the LES with DEWM (LES-DEWM) approach show closer agreement with the DNS
results.




References

  • Anderson, Jr. J. D., Computational Fluid Dynamics, McGraw-Hill, New York, 1995.
  • Balaras, E., Benocci, C., Piomelli, U., Two-layer approximate boundary conditions for large-eddy simulations, AIAA J., 34(6)(1996), 1111-1119.
  • Cabot, W., Large-Eddy Simulations with Wall Models, In: Annual Research Briefs 1995, Center for Turbulence Research, Stanford University, CA, 1995, 41-50.
  • Cabot, W., Moin, P., Approximate Wall Boundary Conditions in the Large-Eddy Simulation of High Reynolds Number Flow, J. Flow Turbulence Combust., 63(2000), 269-291.
  • Dritselis, C. D., Large eddy simulation of turbulent channel flow with transverse roughness elements on one wall, Int. J. Heat Fluid Flow, 50(2014), 225-239.
  • Ferziger, J. H., Peric', M., Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin, 2002.
  • Grotzbach, G., Direct numerical and large eddy simulation of turbulent channel flows, In: Encyclopedia of Fluid Mechanics 1987, Cheremisinoff, NP ed: Gulf Pub, Chap. 34, 1987, 1337-1391.
  • Ham, F. E., Lien, F. S., Strong, A. B., A Fully Conservative Second-Order Finite Difference Scheme for Incompressible Flow on Nonuniform Grids, J. Comput. Phys., 177(2002), 117-133.
  • Harlow, F. H., Welch, J. E., Numerical calculation of time-dependent viscous incompressible flow with free surface, Phys. Fluids, 8(12)(1965), 2182-2189.
  • Johnson, D. B., Raad, P. E., Chen, S., Simulation of impacts of fluid free surfaces with solid boundaries, Int. J. Numer. Methods Fluids, 19(2)(1994), 153-176.
  • Kennedy, C. A., Carpenter, M. H., Lewis, R. M., Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations, Appl. Numer. Math., 35(2000), 177-219.
  • Kianejad, S. S., Ansarifard, N., Numerical Simulation of Turbulent Boundary Layers of Surfaces Covered with Foul Release and Antifouling Coatings, J. Nav. Arch. Marine Eng., 13(2016), 17-26.
  • Kim, J., Moin, P., Moser, R., Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech., 177(1987), 133-166.
  • Mallik, M. S. I., Uddin, M. A., Large Eddy Simulation of Turbulent Channel Flow using Algebraic Wall Model, J. Kor. Soc. Ind. Appl. Math., 20(1)(2016), 37-50.
  • Mallik, M. S. I., Uddin, M. A., Meah, M. A., Large Eddy Simulation of Turbulent Channel Flow at Reτ= 590, IOSR J. Math., 10(6)(2014), 41-50.
  • Mallik, M. S. I., Uddin, M. A.,Rahman, M. A., Direct Numerical Simulation in Two Dimensional Homogeneous Isotropic Turbulence using Spectral Method, J. Sci. Res., 5(3)(2013), 435-445.
  • Morinishi, Y., Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows, J. Comput. Phys., 229(2010), 276-300.
  • Moser, R. D., Kim, J., Mansour, N. N., Direct numrical simulation of turbulent channel flow up to Reτ = 590, Phys. Fluids, 11(4)(1999), 943-945.
  • Sagaut, P., Large Eddy Simulation for Incompressible Flows: An Introduction, Springer-Verlag, Berlin, 2001.
  • Sanderse, B., Koren, B., Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes equations, J. Comput. Phys., 231(8)(2012), 3041-3063.
  • Schumann, U., Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli, J. Comput. Phys., 18(1975), 376-404.
  • Smagorinsky, J., General circulation experiments with the primitive equations, I: The basic experiment, Mon. Weather Rev., 91(3)(1963), 99-165.
  • Spalding, D. B., A single formula for the law of the wall, J. Appl. Mech., 28(3), Ser. E(1961), 455-458.
  • Uddin, A., Kato, C., Yamade, Y., Ohshima, N., Tanahashi, M., Miyauchi, T., Large Eddy Simulation of Homogeneous Isotropic Turbulent Flow using the Finite Element Method, JSME Int. J., 49(1), Ser. B(2006), 102-114.
  • Uddin, M. A., Mallik, M. S. I., Large Eddy Simulation of Turbulent Channel Flow using Smagorinsky Model and Effects of Smagorinsky Constants, Brit. J. Math. Comp. Sci., 7(5)(2015), 375-390.
  • Versteeg, H. K., Malalasekera, W., An introduction to computational fluid dynamics, Longman Group Limited, England, 1995.
  • Wang, M. P., Moin, P., Dynamic wall modeling for large-eddy simulation of complex turbulent flows, Phys. Fluids, 14(7)(2002), 2043-2051.
  • Williamson, J. H., Low-storage Runge-Kutta schemes, J. Comput. Phys., 35(1980), 48-56.
  • Xie, Z., Lin, B., Falconer, R. A., Large-eddy simulation of the turbulent structure in compound open-channel flows, Adv. Water Resour., 53(2013), 66-75.
  • Yang, F., Zhang, H. Q., Chan, C. K., Wang, X. L., Large Eddy Simulation of Turbulent Channel Flow with 3D Roughness Using a Roughness Element Model, Chinese Phys. Lett., 25(1)(2008), 191-194.
Year 2018, Volume: 9, 80 - 90, 28.12.2018

Abstract

References

  • Anderson, Jr. J. D., Computational Fluid Dynamics, McGraw-Hill, New York, 1995.
  • Balaras, E., Benocci, C., Piomelli, U., Two-layer approximate boundary conditions for large-eddy simulations, AIAA J., 34(6)(1996), 1111-1119.
  • Cabot, W., Large-Eddy Simulations with Wall Models, In: Annual Research Briefs 1995, Center for Turbulence Research, Stanford University, CA, 1995, 41-50.
  • Cabot, W., Moin, P., Approximate Wall Boundary Conditions in the Large-Eddy Simulation of High Reynolds Number Flow, J. Flow Turbulence Combust., 63(2000), 269-291.
  • Dritselis, C. D., Large eddy simulation of turbulent channel flow with transverse roughness elements on one wall, Int. J. Heat Fluid Flow, 50(2014), 225-239.
  • Ferziger, J. H., Peric', M., Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin, 2002.
  • Grotzbach, G., Direct numerical and large eddy simulation of turbulent channel flows, In: Encyclopedia of Fluid Mechanics 1987, Cheremisinoff, NP ed: Gulf Pub, Chap. 34, 1987, 1337-1391.
  • Ham, F. E., Lien, F. S., Strong, A. B., A Fully Conservative Second-Order Finite Difference Scheme for Incompressible Flow on Nonuniform Grids, J. Comput. Phys., 177(2002), 117-133.
  • Harlow, F. H., Welch, J. E., Numerical calculation of time-dependent viscous incompressible flow with free surface, Phys. Fluids, 8(12)(1965), 2182-2189.
  • Johnson, D. B., Raad, P. E., Chen, S., Simulation of impacts of fluid free surfaces with solid boundaries, Int. J. Numer. Methods Fluids, 19(2)(1994), 153-176.
  • Kennedy, C. A., Carpenter, M. H., Lewis, R. M., Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations, Appl. Numer. Math., 35(2000), 177-219.
  • Kianejad, S. S., Ansarifard, N., Numerical Simulation of Turbulent Boundary Layers of Surfaces Covered with Foul Release and Antifouling Coatings, J. Nav. Arch. Marine Eng., 13(2016), 17-26.
  • Kim, J., Moin, P., Moser, R., Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech., 177(1987), 133-166.
  • Mallik, M. S. I., Uddin, M. A., Large Eddy Simulation of Turbulent Channel Flow using Algebraic Wall Model, J. Kor. Soc. Ind. Appl. Math., 20(1)(2016), 37-50.
  • Mallik, M. S. I., Uddin, M. A., Meah, M. A., Large Eddy Simulation of Turbulent Channel Flow at Reτ= 590, IOSR J. Math., 10(6)(2014), 41-50.
  • Mallik, M. S. I., Uddin, M. A.,Rahman, M. A., Direct Numerical Simulation in Two Dimensional Homogeneous Isotropic Turbulence using Spectral Method, J. Sci. Res., 5(3)(2013), 435-445.
  • Morinishi, Y., Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows, J. Comput. Phys., 229(2010), 276-300.
  • Moser, R. D., Kim, J., Mansour, N. N., Direct numrical simulation of turbulent channel flow up to Reτ = 590, Phys. Fluids, 11(4)(1999), 943-945.
  • Sagaut, P., Large Eddy Simulation for Incompressible Flows: An Introduction, Springer-Verlag, Berlin, 2001.
  • Sanderse, B., Koren, B., Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes equations, J. Comput. Phys., 231(8)(2012), 3041-3063.
  • Schumann, U., Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli, J. Comput. Phys., 18(1975), 376-404.
  • Smagorinsky, J., General circulation experiments with the primitive equations, I: The basic experiment, Mon. Weather Rev., 91(3)(1963), 99-165.
  • Spalding, D. B., A single formula for the law of the wall, J. Appl. Mech., 28(3), Ser. E(1961), 455-458.
  • Uddin, A., Kato, C., Yamade, Y., Ohshima, N., Tanahashi, M., Miyauchi, T., Large Eddy Simulation of Homogeneous Isotropic Turbulent Flow using the Finite Element Method, JSME Int. J., 49(1), Ser. B(2006), 102-114.
  • Uddin, M. A., Mallik, M. S. I., Large Eddy Simulation of Turbulent Channel Flow using Smagorinsky Model and Effects of Smagorinsky Constants, Brit. J. Math. Comp. Sci., 7(5)(2015), 375-390.
  • Versteeg, H. K., Malalasekera, W., An introduction to computational fluid dynamics, Longman Group Limited, England, 1995.
  • Wang, M. P., Moin, P., Dynamic wall modeling for large-eddy simulation of complex turbulent flows, Phys. Fluids, 14(7)(2002), 2043-2051.
  • Williamson, J. H., Low-storage Runge-Kutta schemes, J. Comput. Phys., 35(1980), 48-56.
  • Xie, Z., Lin, B., Falconer, R. A., Large-eddy simulation of the turbulent structure in compound open-channel flows, Adv. Water Resour., 53(2013), 66-75.
  • Yang, F., Zhang, H. Q., Chan, C. K., Wang, X. L., Large Eddy Simulation of Turbulent Channel Flow with 3D Roughness Using a Roughness Element Model, Chinese Phys. Lett., 25(1)(2008), 191-194.
There are 30 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Muhammad Saiful İslam Mallik

Mohammad Azizul Hoque This is me

Md. Ashraf Uddin This is me

Publication Date December 28, 2018
Published in Issue Year 2018 Volume: 9

Cite

APA Mallik, M. S. İ., Hoque, M. A., & Uddin, M. A. (2018). Comparative Study of Algebraic Wall Model and Differential Equation Wall Model in Large Eddy Simulation of Turbulent Channel Flow. Turkish Journal of Mathematics and Computer Science, 9, 80-90.
AMA Mallik MSİ, Hoque MA, Uddin MA. Comparative Study of Algebraic Wall Model and Differential Equation Wall Model in Large Eddy Simulation of Turbulent Channel Flow. TJMCS. December 2018;9:80-90.
Chicago Mallik, Muhammad Saiful İslam, Mohammad Azizul Hoque, and Md. Ashraf Uddin. “Comparative Study of Algebraic Wall Model and Differential Equation Wall Model in Large Eddy Simulation of Turbulent Channel Flow”. Turkish Journal of Mathematics and Computer Science 9, December (December 2018): 80-90.
EndNote Mallik MSİ, Hoque MA, Uddin MA (December 1, 2018) Comparative Study of Algebraic Wall Model and Differential Equation Wall Model in Large Eddy Simulation of Turbulent Channel Flow. Turkish Journal of Mathematics and Computer Science 9 80–90.
IEEE M. S. İ. Mallik, M. A. Hoque, and M. A. Uddin, “Comparative Study of Algebraic Wall Model and Differential Equation Wall Model in Large Eddy Simulation of Turbulent Channel Flow”, TJMCS, vol. 9, pp. 80–90, 2018.
ISNAD Mallik, Muhammad Saiful İslam et al. “Comparative Study of Algebraic Wall Model and Differential Equation Wall Model in Large Eddy Simulation of Turbulent Channel Flow”. Turkish Journal of Mathematics and Computer Science 9 (December 2018), 80-90.
JAMA Mallik MSİ, Hoque MA, Uddin MA. Comparative Study of Algebraic Wall Model and Differential Equation Wall Model in Large Eddy Simulation of Turbulent Channel Flow. TJMCS. 2018;9:80–90.
MLA Mallik, Muhammad Saiful İslam et al. “Comparative Study of Algebraic Wall Model and Differential Equation Wall Model in Large Eddy Simulation of Turbulent Channel Flow”. Turkish Journal of Mathematics and Computer Science, vol. 9, 2018, pp. 80-90.
Vancouver Mallik MSİ, Hoque MA, Uddin MA. Comparative Study of Algebraic Wall Model and Differential Equation Wall Model in Large Eddy Simulation of Turbulent Channel Flow. TJMCS. 2018;9:80-9.