Research Article
BibTex RIS Cite
Year 2022, Volume: 14 Issue: 1, 201 - 211, 30.06.2022
https://doi.org/10.47000/tjmcs.816174

Abstract

References

  • Budak, H., Sarikaya, M.Z., An inequality of Ostrowski-Grüss type for double integrals, Stud. Univ. Babes-Bolyai Math, 62(2017), 163-173.
  • Budak, H., Sarikaya, M.Z., On weighted Grüss type inequalities for double integrals, Commun. Fac. Sci. Univ. Ank. Series A1, 66(2)(2017), 53-61.
  • Çelik, B., Set, E., Akdemir, A.O., Mixed conformable fractional grüss type inequalities, www.researchgate.net, (2019).
  • Dragomir, S.S., Some integral inequalities of Grüss type, Indian Journal of Pure and Applied Mathematics, 31(4)(2002), 397-415.
  • Dragomir, S.S., A companion of the Grüüss inequality and applications, Applied Mathematics Letters, 17(4)(2004), 429-435.
  • Grüss, G., Uber das maximum des absoluten Betrages von \begin{equation*} \frac{1}{b-a}\int\nolimits_{a}^{b}f(x)g(x)dx-\frac{1}{(b-a)^{2}}% \int\nolimits_{a}^{b}f(x)dx\int\nolimits_{a}^{b}g(x)dx \end{equation*} Mathematische Zeitschrift, 39(1935), 215-226.
  • Jarad, F., Ugurlu, E., Abdeljawad, T., Baleanu, D. , On a new class of fractional operators, Advances in Difference Equations, 247(2017).
  • Jarad, F., Abdeljawad, T., Generalized fractional derivatives and Laplace transforms, Discrete and Continuous Dynamical Systems: Series S, 13(3)(2020), 709-722.
  • Kaçar, E., Kaçar, Z., Yıldırım, H., Integral inequalities for Riemann-Liouville fractional integrals of a function with respect to another function, Iranian Journal of Mathematical Sciences and Informatics, 13(1)(2018), 1-13.
  • Kilbas, A., Srivastava, M.H., Trujillo, J.J., Theory and Application of Fractional Differential Equations, North Holland Mathematics Studies, 2006.
  • Tariboon, J., Ntouyas, S.K., Sudsutad, W., Some new Riemann-Liouville fractional integral inequalities, Int. J. Math. Math. Sci., (2014), Article ID 869434, 1-6.

Grüss Type Integral Inequalities For Generalized $\eta -$ Conformable Fractional Integrals

Year 2022, Volume: 14 Issue: 1, 201 - 211, 30.06.2022
https://doi.org/10.47000/tjmcs.816174

Abstract

Our aim in this paper is to establish new $\eta -$conformable fractional integral. For this purpose new inequalities are obtained by using generalized $\eta -$conformable fractional integral with the help of Grüss type integrals. The inequalities that exist in the literature are obtained in case of some special choices, which shows that the inequality we achieve is a more general inequality.

References

  • Budak, H., Sarikaya, M.Z., An inequality of Ostrowski-Grüss type for double integrals, Stud. Univ. Babes-Bolyai Math, 62(2017), 163-173.
  • Budak, H., Sarikaya, M.Z., On weighted Grüss type inequalities for double integrals, Commun. Fac. Sci. Univ. Ank. Series A1, 66(2)(2017), 53-61.
  • Çelik, B., Set, E., Akdemir, A.O., Mixed conformable fractional grüss type inequalities, www.researchgate.net, (2019).
  • Dragomir, S.S., Some integral inequalities of Grüss type, Indian Journal of Pure and Applied Mathematics, 31(4)(2002), 397-415.
  • Dragomir, S.S., A companion of the Grüüss inequality and applications, Applied Mathematics Letters, 17(4)(2004), 429-435.
  • Grüss, G., Uber das maximum des absoluten Betrages von \begin{equation*} \frac{1}{b-a}\int\nolimits_{a}^{b}f(x)g(x)dx-\frac{1}{(b-a)^{2}}% \int\nolimits_{a}^{b}f(x)dx\int\nolimits_{a}^{b}g(x)dx \end{equation*} Mathematische Zeitschrift, 39(1935), 215-226.
  • Jarad, F., Ugurlu, E., Abdeljawad, T., Baleanu, D. , On a new class of fractional operators, Advances in Difference Equations, 247(2017).
  • Jarad, F., Abdeljawad, T., Generalized fractional derivatives and Laplace transforms, Discrete and Continuous Dynamical Systems: Series S, 13(3)(2020), 709-722.
  • Kaçar, E., Kaçar, Z., Yıldırım, H., Integral inequalities for Riemann-Liouville fractional integrals of a function with respect to another function, Iranian Journal of Mathematical Sciences and Informatics, 13(1)(2018), 1-13.
  • Kilbas, A., Srivastava, M.H., Trujillo, J.J., Theory and Application of Fractional Differential Equations, North Holland Mathematics Studies, 2006.
  • Tariboon, J., Ntouyas, S.K., Sudsutad, W., Some new Riemann-Liouville fractional integral inequalities, Int. J. Math. Math. Sci., (2014), Article ID 869434, 1-6.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Seda Kılınç 0000-0002-3258-6240

Hüseyin Yıldırım 0000-0001-8855-9260

Publication Date June 30, 2022
Published in Issue Year 2022 Volume: 14 Issue: 1

Cite

APA Kılınç, S., & Yıldırım, H. (2022). Grüss Type Integral Inequalities For Generalized $\eta -$ Conformable Fractional Integrals. Turkish Journal of Mathematics and Computer Science, 14(1), 201-211. https://doi.org/10.47000/tjmcs.816174
AMA Kılınç S, Yıldırım H. Grüss Type Integral Inequalities For Generalized $\eta -$ Conformable Fractional Integrals. TJMCS. June 2022;14(1):201-211. doi:10.47000/tjmcs.816174
Chicago Kılınç, Seda, and Hüseyin Yıldırım. “Grüss Type Integral Inequalities For Generalized $\eta -$ Conformable Fractional Integrals”. Turkish Journal of Mathematics and Computer Science 14, no. 1 (June 2022): 201-11. https://doi.org/10.47000/tjmcs.816174.
EndNote Kılınç S, Yıldırım H (June 1, 2022) Grüss Type Integral Inequalities For Generalized $\eta -$ Conformable Fractional Integrals. Turkish Journal of Mathematics and Computer Science 14 1 201–211.
IEEE S. Kılınç and H. Yıldırım, “Grüss Type Integral Inequalities For Generalized $\eta -$ Conformable Fractional Integrals”, TJMCS, vol. 14, no. 1, pp. 201–211, 2022, doi: 10.47000/tjmcs.816174.
ISNAD Kılınç, Seda - Yıldırım, Hüseyin. “Grüss Type Integral Inequalities For Generalized $\eta -$ Conformable Fractional Integrals”. Turkish Journal of Mathematics and Computer Science 14/1 (June 2022), 201-211. https://doi.org/10.47000/tjmcs.816174.
JAMA Kılınç S, Yıldırım H. Grüss Type Integral Inequalities For Generalized $\eta -$ Conformable Fractional Integrals. TJMCS. 2022;14:201–211.
MLA Kılınç, Seda and Hüseyin Yıldırım. “Grüss Type Integral Inequalities For Generalized $\eta -$ Conformable Fractional Integrals”. Turkish Journal of Mathematics and Computer Science, vol. 14, no. 1, 2022, pp. 201-1, doi:10.47000/tjmcs.816174.
Vancouver Kılınç S, Yıldırım H. Grüss Type Integral Inequalities For Generalized $\eta -$ Conformable Fractional Integrals. TJMCS. 2022;14(1):201-1.