Research Article
BibTex RIS Cite
Year 2022, Volume: 14 Issue: 1, 74 - 81, 30.06.2022
https://doi.org/10.47000/tjmcs.969459

Abstract

References

  • Amruthalakshmi, M.R., Prakasha, D.G.,Turki, N.B., Unal, I., $*$-Ricci tensor on $\alpha$-cosymplectic manifolds, Adv. Math. Phys., (2022), Article ID 7939654, $11$ pages.
  • Blair, D.E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1976.
  • De, U.C., Guha, N., Kamilya, D., On generalized Ricci-recurrent manifolds, Tensor N.S., 56(1995), 312-317.
  • Goldberg, S.I., Yano, K., Integrability of almost cosymplectic structures, Pasific J. Math., 31(1969), 373-382.
  • Janssens , D., Vanhecke, L., Almost contact structures and curvature tensors, Kodai Math. J., 4(1981), 1-27.
  • Khatri, M., Singh, J.P., On a class of generalized recurrent $(k,\mu)$-contact metric manifolds, Commun. Korean Math. Soc., 35(4)(2020), 1283-1297.
  • Kim, T.W., Pak, H.K., Canonical foliations of certain classes of almost contact metric structures, Acta Math. Sin. (Engl. Ser.), 21(4)(2005), 841-846.
  • Küpeli Erken, İ., On a classification of almost $\alpha$-cosymplectic manifolds, Khayyam. J. Math., 5(1)(2019), 1-10.
  • Olszak, Z., Locally conformal almost cosymplectic manifolds, Coll. Math., 57(1989), 73-87.
  • Öztürk, H., On almost $\alpha$-cosymplectic manifolds with some nullity distributions, Honam Math. J., 41(2)(2019), 269-284.
  • Patterson, E.M., Some theorems on Ricci-recurrent spaces, J. Lond. Math. Soc., 27(1952), 287-295.
  • Shaikh, A.A., Patra, A., On a generalized class of recurrent manifolds, Arch. Math. (BRNO), 46(2010), 71-78.
  • Shaikh, A.A., Roy, I., On quasi-generalized recurrent manifolds, Math. Pannonica., 21(2)(2010), 251-263.
  • Venkatesha, V., Kumara, H.A., . Naik, D.M., On a class of generalized $\varphi$-recurrent Sasakian manifold, J. Egyptian Math. Soc., 27(1)(2019).
  • Yoldaş, H.İ., Some results on $\alpha$-cosymplectic manifolds, Bull. Transilv. Univ. Braşov, Ser. III, Math. Comput. Sci., 1(63)no. 2(2021), 115-128.
  • Yoldaş, H.İ., Eken Meriç, Ş., Yaşar, E., Some characterizations of $\alpha$-cosymplectic manifolds admitting Yamabe solitons, Palest. J. Math., 10(1)(2021), 234-241.

On Some Classes of Generalized Recurrent α-Cosymplectic Manifolds

Year 2022, Volume: 14 Issue: 1, 74 - 81, 30.06.2022
https://doi.org/10.47000/tjmcs.969459

Abstract

In this paper, we concentrate on hyper generalized $\varphi-$recurrent $\alpha-$cosymplectic manifolds and quasi generalized $\varphi-$recurrent $\alpha-$cosymplectic manifolds and obtain some significant characterizations which classify such manifolds.

References

  • Amruthalakshmi, M.R., Prakasha, D.G.,Turki, N.B., Unal, I., $*$-Ricci tensor on $\alpha$-cosymplectic manifolds, Adv. Math. Phys., (2022), Article ID 7939654, $11$ pages.
  • Blair, D.E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1976.
  • De, U.C., Guha, N., Kamilya, D., On generalized Ricci-recurrent manifolds, Tensor N.S., 56(1995), 312-317.
  • Goldberg, S.I., Yano, K., Integrability of almost cosymplectic structures, Pasific J. Math., 31(1969), 373-382.
  • Janssens , D., Vanhecke, L., Almost contact structures and curvature tensors, Kodai Math. J., 4(1981), 1-27.
  • Khatri, M., Singh, J.P., On a class of generalized recurrent $(k,\mu)$-contact metric manifolds, Commun. Korean Math. Soc., 35(4)(2020), 1283-1297.
  • Kim, T.W., Pak, H.K., Canonical foliations of certain classes of almost contact metric structures, Acta Math. Sin. (Engl. Ser.), 21(4)(2005), 841-846.
  • Küpeli Erken, İ., On a classification of almost $\alpha$-cosymplectic manifolds, Khayyam. J. Math., 5(1)(2019), 1-10.
  • Olszak, Z., Locally conformal almost cosymplectic manifolds, Coll. Math., 57(1989), 73-87.
  • Öztürk, H., On almost $\alpha$-cosymplectic manifolds with some nullity distributions, Honam Math. J., 41(2)(2019), 269-284.
  • Patterson, E.M., Some theorems on Ricci-recurrent spaces, J. Lond. Math. Soc., 27(1952), 287-295.
  • Shaikh, A.A., Patra, A., On a generalized class of recurrent manifolds, Arch. Math. (BRNO), 46(2010), 71-78.
  • Shaikh, A.A., Roy, I., On quasi-generalized recurrent manifolds, Math. Pannonica., 21(2)(2010), 251-263.
  • Venkatesha, V., Kumara, H.A., . Naik, D.M., On a class of generalized $\varphi$-recurrent Sasakian manifold, J. Egyptian Math. Soc., 27(1)(2019).
  • Yoldaş, H.İ., Some results on $\alpha$-cosymplectic manifolds, Bull. Transilv. Univ. Braşov, Ser. III, Math. Comput. Sci., 1(63)no. 2(2021), 115-128.
  • Yoldaş, H.İ., Eken Meriç, Ş., Yaşar, E., Some characterizations of $\alpha$-cosymplectic manifolds admitting Yamabe solitons, Palest. J. Math., 10(1)(2021), 234-241.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Halil İbrahim Yoldaş 0000-0002-3238-6484

Publication Date June 30, 2022
Published in Issue Year 2022 Volume: 14 Issue: 1

Cite

APA Yoldaş, H. İ. (2022). On Some Classes of Generalized Recurrent α-Cosymplectic Manifolds. Turkish Journal of Mathematics and Computer Science, 14(1), 74-81. https://doi.org/10.47000/tjmcs.969459
AMA Yoldaş Hİ. On Some Classes of Generalized Recurrent α-Cosymplectic Manifolds. TJMCS. June 2022;14(1):74-81. doi:10.47000/tjmcs.969459
Chicago Yoldaş, Halil İbrahim. “On Some Classes of Generalized Recurrent α-Cosymplectic Manifolds”. Turkish Journal of Mathematics and Computer Science 14, no. 1 (June 2022): 74-81. https://doi.org/10.47000/tjmcs.969459.
EndNote Yoldaş Hİ (June 1, 2022) On Some Classes of Generalized Recurrent α-Cosymplectic Manifolds. Turkish Journal of Mathematics and Computer Science 14 1 74–81.
IEEE H. İ. Yoldaş, “On Some Classes of Generalized Recurrent α-Cosymplectic Manifolds”, TJMCS, vol. 14, no. 1, pp. 74–81, 2022, doi: 10.47000/tjmcs.969459.
ISNAD Yoldaş, Halil İbrahim. “On Some Classes of Generalized Recurrent α-Cosymplectic Manifolds”. Turkish Journal of Mathematics and Computer Science 14/1 (June 2022), 74-81. https://doi.org/10.47000/tjmcs.969459.
JAMA Yoldaş Hİ. On Some Classes of Generalized Recurrent α-Cosymplectic Manifolds. TJMCS. 2022;14:74–81.
MLA Yoldaş, Halil İbrahim. “On Some Classes of Generalized Recurrent α-Cosymplectic Manifolds”. Turkish Journal of Mathematics and Computer Science, vol. 14, no. 1, 2022, pp. 74-81, doi:10.47000/tjmcs.969459.
Vancouver Yoldaş Hİ. On Some Classes of Generalized Recurrent α-Cosymplectic Manifolds. TJMCS. 2022;14(1):74-81.