Research Article
BibTex RIS Cite
Year 2023, Volume: 15 Issue: 1, 104 - 109, 30.06.2023
https://doi.org/10.47000/tjmcs.1105934

Abstract

References

  • Galstian, A., Lp - Lq decay estiamtes for the Klein-Gordon equation in the anti-de Sitter space-time, Rend. Istit. Mat. Univ. Trieste 42 (2010), 27–50.
  • Galstian, A., Yagdjian, K., Global in time existence of self-interacting scalar field in de Sitter spacetimes, Nonlinear Anal. Real World Appl. 34 (2017), 110–139.
  • Møller, C., The Theory of Relativity, Clarendon Press, Oxford, 1972.
  • Nakamura, M., The Cauchy problem for semi-linear Klein-Gordon equations in de Sitter spacetime, J. Math. Anal. Appl. 410 (2014), 445–454.
  • Yagdjian, K., Galstian, A., Fundamental Solutions for Wave Equation in de Sitter Model of Universe, ISSN 1437-739X, University of Potsdam, August, Preprint 2007/06.
  • Yagdjian,K., Galstian, A., Fundamental solutions for the Klein–Gordon equation in de Sitter spacetime, Comm. Math. Phys. 285 (2009), 293–344.
  • Yagdjian, K., Galstian, A., The Klein–Gordon equation in anti-de Sitter spacetime, Rend. Sem. Mat. Univ. Pol. Torino 67 (2) (2009), 271–292.
  • Yagdjian, K., Global existence of the scalar field in de Sitter spacetime, J. Math. Anal. Appl. 396 (2012), 323–344.
  • Yagdjian, K., Global existence of the self-interacting scalar field in the de Sitter universe, J. Math. Phys. 60 (5) (2019), 051503.
  • Yazici, M., A remark on the decay property for the Klein-Gordon equation in anti-de Sitter space time , New Trends Math.Sci. 5(4) (2017), 142–147.
  • Yazici, M., Decay estimates for the Klein-Gordon equation in curved spacetime, Electron. J. Differential Equations 17 (2018), 1–9.
  • Wahl, W. V., Lp-decay rates for homogeneous wave-equations, Math. Z. 120 (1971), 93–106.

L$^{\infty}$ Decay Estimate for the Klein-Gordon Equation in the Anti-de Sitter Model of the Universe

Year 2023, Volume: 15 Issue: 1, 104 - 109, 30.06.2023
https://doi.org/10.47000/tjmcs.1105934

Abstract

We consider the inital value problem for the Klein-Gordon equation with non-zero initial data in anti-de Sitter spacetime. $L^{\infty}$ decay estimate is derived for the solutions to the linear Klein-Gordon equations in the anti-de Sitter spacetime without source term.

References

  • Galstian, A., Lp - Lq decay estiamtes for the Klein-Gordon equation in the anti-de Sitter space-time, Rend. Istit. Mat. Univ. Trieste 42 (2010), 27–50.
  • Galstian, A., Yagdjian, K., Global in time existence of self-interacting scalar field in de Sitter spacetimes, Nonlinear Anal. Real World Appl. 34 (2017), 110–139.
  • Møller, C., The Theory of Relativity, Clarendon Press, Oxford, 1972.
  • Nakamura, M., The Cauchy problem for semi-linear Klein-Gordon equations in de Sitter spacetime, J. Math. Anal. Appl. 410 (2014), 445–454.
  • Yagdjian, K., Galstian, A., Fundamental Solutions for Wave Equation in de Sitter Model of Universe, ISSN 1437-739X, University of Potsdam, August, Preprint 2007/06.
  • Yagdjian,K., Galstian, A., Fundamental solutions for the Klein–Gordon equation in de Sitter spacetime, Comm. Math. Phys. 285 (2009), 293–344.
  • Yagdjian, K., Galstian, A., The Klein–Gordon equation in anti-de Sitter spacetime, Rend. Sem. Mat. Univ. Pol. Torino 67 (2) (2009), 271–292.
  • Yagdjian, K., Global existence of the scalar field in de Sitter spacetime, J. Math. Anal. Appl. 396 (2012), 323–344.
  • Yagdjian, K., Global existence of the self-interacting scalar field in the de Sitter universe, J. Math. Phys. 60 (5) (2019), 051503.
  • Yazici, M., A remark on the decay property for the Klein-Gordon equation in anti-de Sitter space time , New Trends Math.Sci. 5(4) (2017), 142–147.
  • Yazici, M., Decay estimates for the Klein-Gordon equation in curved spacetime, Electron. J. Differential Equations 17 (2018), 1–9.
  • Wahl, W. V., Lp-decay rates for homogeneous wave-equations, Math. Z. 120 (1971), 93–106.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Muhammet Yazıcı 0000-0001-9974-4189

Publication Date June 30, 2023
Published in Issue Year 2023 Volume: 15 Issue: 1

Cite

APA Yazıcı, M. (2023). L$^{\infty}$ Decay Estimate for the Klein-Gordon Equation in the Anti-de Sitter Model of the Universe. Turkish Journal of Mathematics and Computer Science, 15(1), 104-109. https://doi.org/10.47000/tjmcs.1105934
AMA Yazıcı M. L$^{\infty}$ Decay Estimate for the Klein-Gordon Equation in the Anti-de Sitter Model of the Universe. TJMCS. June 2023;15(1):104-109. doi:10.47000/tjmcs.1105934
Chicago Yazıcı, Muhammet. “L$^{\infty}$ Decay Estimate for the Klein-Gordon Equation in the Anti-De Sitter Model of the Universe”. Turkish Journal of Mathematics and Computer Science 15, no. 1 (June 2023): 104-9. https://doi.org/10.47000/tjmcs.1105934.
EndNote Yazıcı M (June 1, 2023) L$^{\infty}$ Decay Estimate for the Klein-Gordon Equation in the Anti-de Sitter Model of the Universe. Turkish Journal of Mathematics and Computer Science 15 1 104–109.
IEEE M. Yazıcı, “L$^{\infty}$ Decay Estimate for the Klein-Gordon Equation in the Anti-de Sitter Model of the Universe”, TJMCS, vol. 15, no. 1, pp. 104–109, 2023, doi: 10.47000/tjmcs.1105934.
ISNAD Yazıcı, Muhammet. “L$^{\infty}$ Decay Estimate for the Klein-Gordon Equation in the Anti-De Sitter Model of the Universe”. Turkish Journal of Mathematics and Computer Science 15/1 (June 2023), 104-109. https://doi.org/10.47000/tjmcs.1105934.
JAMA Yazıcı M. L$^{\infty}$ Decay Estimate for the Klein-Gordon Equation in the Anti-de Sitter Model of the Universe. TJMCS. 2023;15:104–109.
MLA Yazıcı, Muhammet. “L$^{\infty}$ Decay Estimate for the Klein-Gordon Equation in the Anti-De Sitter Model of the Universe”. Turkish Journal of Mathematics and Computer Science, vol. 15, no. 1, 2023, pp. 104-9, doi:10.47000/tjmcs.1105934.
Vancouver Yazıcı M. L$^{\infty}$ Decay Estimate for the Klein-Gordon Equation in the Anti-de Sitter Model of the Universe. TJMCS. 2023;15(1):104-9.