Research Article
BibTex RIS Cite

Skew Cyclic Codes over $\mathbb{Z}_{8}+u\mathbb{Z}_{8}+v\mathbb{Z}_{8}$

Year 2023, Volume: 15 Issue: 1, 96 - 103, 30.06.2023
https://doi.org/10.47000/tjmcs.995569

Abstract

In this paper, we study the skew cyclic codes over the ring $S=\mathbb{Z}_{8}+u\mathbb{Z}_{8}+v\mathbb{Z}_{8}$, where $u^{2}=u$, $v^{2}=v$, $uv=vu=0$. We consider these codes as left $S[x,\theta]$-submodules and use the Gray map on $S$ to obtain the $\mathbb{Z}_{8}$-images. The generator and parity-check matrices of a free $\theta$-cyclic
code of even length over $S$ are determined. Also, these codes are generalized to double skew-cyclic codes. We give some examples using Magma computational algebra system.

References

  • Bosma, W. Cannon J., Playoust, C., The Magma algebra system I. The user language, J. Symbolic Comput., 24(1997), 235–265.
  • Boucher, D., Ulmer, F., Coding with skew polynomial rings, J. of Symbolic Comput., 44(2009), 1644–1656.
  • Boucher, D., Geiselmann, W., Ulmer, F., Skew-cyclic codes, Appl. Alg. in Eng., Comm. and Comput., 18(4)(2007), 379–389.
  • Cengellenmis, Y., On the cyclic codes over F3 + vF3, Int. J. of Algebra, 4(6)(2010), 253–259.
  • Çalışkan, B., Balıkçı, K., Counting Z2Z4Z8-additive codes, European J. of Pure and Applied Math., 12(2)(2019), 668–679.
  • Çalışkan, B., Linear Codes over the Ring Z8 + uZ8 + vZ8, (ICOMAA-2020), Conference Proceeding Science and Technology, 3(1)(2020), 19–23.
  • Çalışkan, B., Cylic Codes over the Ring Z8 + uZ8 + vZ8, (ICMASE 2020), Proceedings Book, Ankara Hacı Bayram Veli University, Ankara, Turkey, (2020), 7–12.
  • Dertli, A., Cengellenmis, Y., On the codes over the ring Z4 + uZ4 + vZ4 cyclic, constacyclic, quasi-cyclic codes, their skew codes, cyclic DNA and skew cyclic DNA codes, Prespacetime Journal, 10(2)(2019), 196–213.
  • Gao, J., Skew cyclic codes over Fp + vFp, J. Appl. Math. Inform, 31(3-4)(2013), 337–342.
  • Hammons A.R., Kumar V., Calderbank A.R., Sloane N.J.A., Sole P., The Z4-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40(1994), 301–319.
  • Jin, L., Skew cyclic codes over ring Fp + vF2, J. of Electronics (China), 31(3)(2014), 228–231.
  • Melakhessou, A., Aydin, N., Hebbache, Z., Guenda, K., Zq(Zq + uZq)-linear skew constacyclic codes, J. Algebra Comb. Discrete Appl., 7(1)(2019), 85–101.
  • Mohammadi, R., Rahimi S., Mousavi, H., On skew cyclic codes over a finite ring, Iranian J. of Math. Sci. and Inf., 14(1)(2019), 135–145.
  • Sharma, A., Bhaintwal, M., A class of skew-constacyclic codes over Z4 + uZ4, Int. J. Inf. and Coding Theory, 4(4)(2017), 289–303.
  • Siap, I., Abualrub, T., Aydin, N., Seneviratne, P., Skew cyclic codes of arbitrary length, Int. J. of Inf. and Coding Theory, 2(1)(2011), 10–20.
Year 2023, Volume: 15 Issue: 1, 96 - 103, 30.06.2023
https://doi.org/10.47000/tjmcs.995569

Abstract

References

  • Bosma, W. Cannon J., Playoust, C., The Magma algebra system I. The user language, J. Symbolic Comput., 24(1997), 235–265.
  • Boucher, D., Ulmer, F., Coding with skew polynomial rings, J. of Symbolic Comput., 44(2009), 1644–1656.
  • Boucher, D., Geiselmann, W., Ulmer, F., Skew-cyclic codes, Appl. Alg. in Eng., Comm. and Comput., 18(4)(2007), 379–389.
  • Cengellenmis, Y., On the cyclic codes over F3 + vF3, Int. J. of Algebra, 4(6)(2010), 253–259.
  • Çalışkan, B., Balıkçı, K., Counting Z2Z4Z8-additive codes, European J. of Pure and Applied Math., 12(2)(2019), 668–679.
  • Çalışkan, B., Linear Codes over the Ring Z8 + uZ8 + vZ8, (ICOMAA-2020), Conference Proceeding Science and Technology, 3(1)(2020), 19–23.
  • Çalışkan, B., Cylic Codes over the Ring Z8 + uZ8 + vZ8, (ICMASE 2020), Proceedings Book, Ankara Hacı Bayram Veli University, Ankara, Turkey, (2020), 7–12.
  • Dertli, A., Cengellenmis, Y., On the codes over the ring Z4 + uZ4 + vZ4 cyclic, constacyclic, quasi-cyclic codes, their skew codes, cyclic DNA and skew cyclic DNA codes, Prespacetime Journal, 10(2)(2019), 196–213.
  • Gao, J., Skew cyclic codes over Fp + vFp, J. Appl. Math. Inform, 31(3-4)(2013), 337–342.
  • Hammons A.R., Kumar V., Calderbank A.R., Sloane N.J.A., Sole P., The Z4-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40(1994), 301–319.
  • Jin, L., Skew cyclic codes over ring Fp + vF2, J. of Electronics (China), 31(3)(2014), 228–231.
  • Melakhessou, A., Aydin, N., Hebbache, Z., Guenda, K., Zq(Zq + uZq)-linear skew constacyclic codes, J. Algebra Comb. Discrete Appl., 7(1)(2019), 85–101.
  • Mohammadi, R., Rahimi S., Mousavi, H., On skew cyclic codes over a finite ring, Iranian J. of Math. Sci. and Inf., 14(1)(2019), 135–145.
  • Sharma, A., Bhaintwal, M., A class of skew-constacyclic codes over Z4 + uZ4, Int. J. Inf. and Coding Theory, 4(4)(2017), 289–303.
  • Siap, I., Abualrub, T., Aydin, N., Seneviratne, P., Skew cyclic codes of arbitrary length, Int. J. of Inf. and Coding Theory, 2(1)(2011), 10–20.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Basri Çalışkan

Kemal Balıkçı 0000-0001-6234-5627

Publication Date June 30, 2023
Published in Issue Year 2023 Volume: 15 Issue: 1

Cite

APA Çalışkan, B., & Balıkçı, K. (2023). Skew Cyclic Codes over $\mathbb{Z}_{8}+u\mathbb{Z}_{8}+v\mathbb{Z}_{8}$. Turkish Journal of Mathematics and Computer Science, 15(1), 96-103. https://doi.org/10.47000/tjmcs.995569
AMA Çalışkan B, Balıkçı K. Skew Cyclic Codes over $\mathbb{Z}_{8}+u\mathbb{Z}_{8}+v\mathbb{Z}_{8}$. TJMCS. June 2023;15(1):96-103. doi:10.47000/tjmcs.995569
Chicago Çalışkan, Basri, and Kemal Balıkçı. “Skew Cyclic Codes over $\mathbb{Z}_{8}+u\mathbb{Z}_{8}+v\mathbb{Z}_{8}$”. Turkish Journal of Mathematics and Computer Science 15, no. 1 (June 2023): 96-103. https://doi.org/10.47000/tjmcs.995569.
EndNote Çalışkan B, Balıkçı K (June 1, 2023) Skew Cyclic Codes over $\mathbb{Z}_{8}+u\mathbb{Z}_{8}+v\mathbb{Z}_{8}$. Turkish Journal of Mathematics and Computer Science 15 1 96–103.
IEEE B. Çalışkan and K. Balıkçı, “Skew Cyclic Codes over $\mathbb{Z}_{8}+u\mathbb{Z}_{8}+v\mathbb{Z}_{8}$”, TJMCS, vol. 15, no. 1, pp. 96–103, 2023, doi: 10.47000/tjmcs.995569.
ISNAD Çalışkan, Basri - Balıkçı, Kemal. “Skew Cyclic Codes over $\mathbb{Z}_{8}+u\mathbb{Z}_{8}+v\mathbb{Z}_{8}$”. Turkish Journal of Mathematics and Computer Science 15/1 (June 2023), 96-103. https://doi.org/10.47000/tjmcs.995569.
JAMA Çalışkan B, Balıkçı K. Skew Cyclic Codes over $\mathbb{Z}_{8}+u\mathbb{Z}_{8}+v\mathbb{Z}_{8}$. TJMCS. 2023;15:96–103.
MLA Çalışkan, Basri and Kemal Balıkçı. “Skew Cyclic Codes over $\mathbb{Z}_{8}+u\mathbb{Z}_{8}+v\mathbb{Z}_{8}$”. Turkish Journal of Mathematics and Computer Science, vol. 15, no. 1, 2023, pp. 96-103, doi:10.47000/tjmcs.995569.
Vancouver Çalışkan B, Balıkçı K. Skew Cyclic Codes over $\mathbb{Z}_{8}+u\mathbb{Z}_{8}+v\mathbb{Z}_{8}$. TJMCS. 2023;15(1):96-103.