Biomolecules in electrochemical sensing: A concise overview and recent advances in two key analytical fields
Year 2025,
Volume: 2 Issue: 2, 5 - 17, 29.12.2025
Rebeca Rosas
,
Javier Ernesto Vilasó Cadre
,
Humberto Montaño Tello
,
Iván Alejandro Reyes-Domínguez
,
Juan Santiago Hidalgo Viteri
,
Yajaira Estefanía Trujillo Arcos
Abstract
Electrochemical biosensors are electroanalytical sensors that use biomolecules as recognition elements. These devices can be constructed using enzymes, nucleic acids, aptamers, pili, and other biomolecules. Unlike sensors based on nanomaterials, biosensors can be highly specific due to the nature of the interactions that enable recognition and sensing. These interactions are specific due to the chemical composition and three-dimensional structure. Biosensors are a rapidly growing field within modern electroanalysis closely related to clinical analysis and environmental pollution control. These are two fields in which biosensors are widely used, given the complex nature of the samples, which makes interfering species likely. Biosensors are a promising tool for early diagnosis of neurodegenerative and metabolic diseases as well as for quantifying heavy metals and pesticides in water and soil. The latter is closely related to mining, metallurgy, and agriculture. In general, biosensors show promise for point-of-care diagnosis and for achieving sustainable development goals related to clean ecosystems and sustainable industry. This paper presents a concise overview of the nature of the main biomolecules used in electrochemical biosensing and some recent advances in the fields of clinical diagnostics and environmental pollutant detection. This paper is intended to serve as a quick and up-to-date guide on the development of biosensors for two of the most important fields of application of analytical chemistry.
References
-
Swain, C. K. (2024). Environmental pollution indices: a review on concentration of heavy metals in air, water, and soil near industrialization and urbanization. Discover Environment, 2, 5.
-
Dehkordi, M. M, Nodeh, Z. P., Dehkordi, K. S., Salmanvandi, H., Khorjestan, R. R. & Ghaffarzadeh, M. Soil, air, and water pollution from mining and industrial activities: Sources of pollution, environmental impacts, and prevention and control methods. Results in Engineering, 23, 102729.
-
Skoog, D. A., Holler, F. J., & Crouch, S. R. (2017). Principles of instrumental analysis (7th ed.). Cengage Learning.
-
Baranwal, J., Barse, B., Gatto, G., Broncova, G., & Kumar, A. (2022). Electrochemical sensors and their applications: A review. Chemosensors, 10, 363.
-
Zhao, Z., Cao, J., Zhu, B., Li, X., Zhou, L., & Su, B. (2025). Recent advances in MXene-based electrochemical sensors. Biosensors, 15, 107.
-
Li, Y., Luo, L., Kong, Y., Li, Y., Wang, Q., Wang, M., Li, Y., Davenport, A., & Li, B. (2024). Recent advances in molecularly imprinted polymer-based electrochemical sensors. Biosensors and Bioelectronics, 249, 116018.
-
Hao, X., Song, W., Wang, Y., Qin, J., & Jiang, Z. (2025). Recent advancements in electrochemical sensors based on MOFs and their derivatives. Small, 21, 2408624.
-
Annu, & Raja, A. N. (2020). Recent development in chitosan-based electrochemical sensors and its sensing application. International Journal of Biological Macromolecules, 164, 4231–4244.
-
Rodriguez-Mendez, L., Jasper, I., Lima Valério, T., Klobukoski, V., Melo Pesqueira, C., Massaneiro, J., Pereira Camargo, L., Dall, L. H., & Vidotti, M. (2023). Electrocatalytic and photoelectrocatalytic sensors based on organic, inorganic, and hybrid materials: A review. Chemosensors, 11, 261.
-
Fatima, T., Bansal, S., Husain, S., & Khanuja, M. (2022). Biosensors. In Electrochemical sensors: From working electrodes to functionalization and miniaturized devices (pp. 1–30). Woodhead Publishing.
-
Rezaei, B., & Irannejad, N. (2019). Electrochemical detection techniques in biosensor applications. In A. Ensafi (Ed.), Electrochemical biosensors (pp. 11–43). Elsevier.
-
Krishnan, V., Pandey, G. R., & Pandiyaraj, K. (2024). Fundamentals of a biosensor system. In M. Veerapandian, J. Joseph, & M. Marimuthu (Eds.), Health and environmental applications of biosensing technologies (pp. 1–25). Elsevier.
-
Tripathi, M. K., Nickhil, C., Kate, A., Srivastva, R. M., Mohapatra, D., Jadam, R. S., Yadav, A., & Modhera, B. (2023). Biosensor: Fundamentals, biomolecular component, and applications. In K. Pal et al. (Eds.), Advances in biomedical polymers and composites (pp. 617–633). Elsevier.
-
Gao, W., Wang, Q., Gong, W., Zheng, L., Liu, Q., Zhang, L., & Ma, Y. (2025). Recent advances in biosensors: Structure, principles, classification, and application in bio-manufacturing. Methods, 242, 123–142.
-
Goswami, P. P., & Singh, S. G. (2025). Electrochemical biosensors: A prospective insight to recent developments and future directions. Current Opinion in Electrochemistry, 101776.
-
Samanci, S. N., Ozcelikay-Akyildiz, G., Kaya, S. I., & Ozkan, S. A. (2025). Recent advancements in novel electrochemical sensors for disease-associated molecule determination. Journal of Pharmaceutical and Biomedical Analysis Open, 5, 100051.
-
Xiao, Y., Du, Z., Li, Y., Cao, L., Zhu, B., Kitaguchi, T., & Huang, C. (2025). A review on the application of biosensors for monitoring emerging contaminants in the water environment. Sensors, 25.
-
Debiais, M., Lelievre, A., Smietana, M., & Müller, S. (2020). Splitting aptamers and nucleic acid enzymes for advanced biosensors. Nucleic Acids Research, 48, 3400–3422.
-
Khan, S., Burciu, B., Filipe, C. D. M., Li, Y., Dellinger, K., & Didar, T. F. (2021). DNAzyme-based biosensors: Immobilization strategies, applications, and future prospective. ACS Nano, 15, 13943–13969.
-
Yang, L. F., Ling, M., Kacherovsky, N., & Pun, S. H. (2023). Aptamers 101: Aptamer discovery and in vitro applications in biosensors and separations. Chemical Science, 14, 4961–4978.
-
Liu, L. S., Wang, F., Ge, Y., & Lo, P. K. (2020). Recent developments in aptasensors for diagnostic applications. ACS Applied Materials & Interfaces, 13, 9329–9358.
-
Malekzad, H., Sahandi Zangabad, P., Mirshekari, H., Karimi, M., & Hamblin, M. R. (2017). Noble metal nanoparticles in biosensors: Recent studies and applications. Nanotechnology Reviews, 6, 301–329.
-
Akkilic, N., Geschwindner, S., & Höök, F. (2020). Single-molecule biosensors: Recent advances and applications. Biosensors and Bioelectronics, 151, 111944.
-
Wang, Q., Wang, J., Huang, Y., Du, Y., Zhang, Y., Cui, Y., & Kong, D. M. (2022). Development of DNA-based biosensors for high-performance detection of molecular biomarkers. Biosensors and Bioelectronics, 197, 113739.
-
Tiwari, J. N., Vij, V., Kemp, K. C., & Kim, K. S. (2015). Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. ACS Nano, 10, 46–80.
-
Kuntoji, G., Kousar, N., Gaddimath, S., & Sannegowda, L. K. (2024). Macromolecule–nanoparticle-based hybrid materials for biosensor applications. Biosensors, 14.
-
Wang, L., Xie, H., Lin, Y., Wang, M., Sha, L., Yu, X., Yang, J., Zhao, J., & Li, G. (2022). COF-based biosensors for disease biomarker detection. Biosensors and Bioelectronics, 217, 114668.
-
Theyagarajan, K., & Kim, Y.-J. (2023). Recent developments in electrochemical biosensors using functional materials and molecules. Biosensors, 13.
-
Yang, F., Zuo, X., Fan, C., & Zhang, X. E. (2018). Biomacromolecular nanostructures-based interfacial engineering. National Science Review, 5, 740–755.
-
Lovley, D. R. (2017). Electrically conductive pili: Biological function and potential applications. Current Opinion in Electrochemistry, 4, 190–198.
-
Cui, F., Shen, X., Cao, B., Ji, H., Liu, J., Zhuang, X., Zeng, C., Qu, B., Li, S., Xu, Y., Zhou, Q., & Xu, Y. (2022). Bacterial identification using mannose biosensor. Biosensors and Bioelectronics, 203, 114044.
-
Jankovics, H., Szekér, P., Tóth, É., Kakasi, B., Lábadi, Z., Saftics, A., Kalas, B., Fried, M., Petrik, P., & Vonderviszt, F. (2021). Flagellin-based electrochemical sensing layer for arsenic detection in water. Scientific Reports, 11, 3497.
-
Bard, A., Faulkner, L., & White, H. (2022). Electrochemical methods: Fundamentals and applications (3rd ed.). Wiley.
-
Wang, S., Zhang, J., Gharbi, O., Vivier, V., Gao, M., & Orazem, M. E. (2021). Electrochemical impedance spectroscopy. Nature Reviews Methods Primers, 1, 41.
-
Lazanas, A. C., & Prodromidis, M. I. (2023). Electrochemical impedance spectroscopy—A tutorial. ACS Measurement Science Au, 3, 162–193.
-
Magar, H. S., Hassan, R. Y. A., & Mulchandani, A. (2021). Electrochemical impedance spectroscopy: Principles, construction, and biosensing applications. Sensors, 21, 6578.
-
Nagdeve, S. N., Suganthan, B., & Ramasamy, R. P. (2025). Electrochemical biosensor for detection of microRNA-31. Journal of Biological Engineering, 19, 24.
-
Jeong, S., Park, S. H., Lee, S., Cho, H., Lee, K. Y., Ju, B. K., Lee, Y. J., & Lee, S. H. (2025). Electrochemical biosensor for Parkinson’s disease detection. Chemical Engineering Journal, 509, 161329.
-
Yang, T., Shen, T., Duan, B., Liu, Z., & Wang, C. (2025). In vivo electrochemical biosensing technologies for neurochemicals. ACS Sensors, 10, 100–121.
-
Calatayud, M., Jódar, E., Sánchez, R., Guadalix, S., & Hawkins, F. (2009). Prevalencia de vitamina D deficiente en población joven. Endocrinología y Nutrición, 56, 164–169.
-
Barman, S. C., Jin, Y., El-Demellawi, J. K., Thomas, S., Wehbe, N., Lei, Y., Hota, M. K., Xu, X., Hasan, E. A., Mohammed, O. F., Bakr, O. M., Alsulaiman, D., & Alshareef, H. N. (2025). MXene-based electrochemical biosensor for vitamin D deficiency. Communications Materials, 6, 31.
-
Song, J., Luo, Y., Hao, Z., Qu, M., Huang, C., Wang, Z., Yang, J., Liang, Q., Jia, Y., Song, Q., Zhang, Q., & Luo, S. (2025). Graphene-based wearable biosensors for point-of-care diagnostics. Materials Today Bio, 32, 101667.
-
Abdelfattah, M. A., Jamali, S. S., Kashaninejad, N., & Nguyen, N. T. (2025). Wearable biosensors: Advances in graphene technologies. Nanoscale Horizons, 10, 1542–1574.
-
Sha, J., Hao, L., Fang, X., Zhu, N., Yang, Y., Peng, K., Ye, T., Cao, H., Gu, H., & Xu, F. (2025). pH-stability improved electrochemical biosensor. Food Control, 171, 111099.
-
Xiang, M., Yin, C., Chen, Q., Zhu, G., Chen, Z., Li, H., Antwi-Baah, R., Tang, J., Yang, K., & Xu, S. (2025). Label-free electrochemical biosensor for uranyl ions. Microchemical Journal, 213, 113811.
-
Chen, J., Zhong, F., Deng, M., He, J., Li, M., Khalid, W., Shui, L., Liu, Z., & Huang, Q. (2025). Portable paper-based electrochemical impedance aptasensor for Pb²⁺. Electrochimica Acta, 541, 147188.
-
Qin, J., Chen, Y., Jia, L., Chang, T., Chen, J., Li, Y., Ma, Z., Zhan, Y., & Yang, H. (2025). Electrochemical biosensor for fenitrothion. Microchemical Journal, 216, 114593.
-
Hidalgo, J. S., Tóth, É., Jankovics, H., Fort, C. I., Turdean, G. L., Tombacz, E., & Galambos, I. (2023). Flagellin–TiO2 nanoparticle-based glassy carbon electrodes. Chemosensors, 11, 576.
-
Patial, B., Pabbi, M., Gupta, S., Mittal, S. K., Bansal, A., & Gupta, R. (2025). Amperometric biosensor using Chlorella sp. for pesticides. Bioresource Technology Reports, 31, 102278.