Research Article
BibTex RIS Cite
Year 2022, , 375 - 394, 30.09.2022
https://doi.org/10.55525/tjst.1122007

Abstract

References

  • [1] Jans TM. Flux-weakening regime operation of an interior permanent magnet synchronous motor drive. IEEE Trans. Ind. Appl. 1987; IA-23(4): 681-689.
  • [2] Sebastian T, Siemon GR. Operating limits of inverter-driven permanent magnet motor drives. IEEE Trans. Ind. Applicat. 1987; 23: 327-333.
  • [3] Schiferl RF, Lipo TA. Power capability of salient pole permanent magnet synchronous motor in variable speed drive applications. IEEE Trans. Ind. Applicat. 1990; 26: 115-123.
  • [4] Sneyers B, Novotny DW, Lipo TA. Field weakening in buried permanent magnet Ac motor drives. IEEE Trans. Ind. Applicat. 1985; 21: 398-407.
  • [5] Lawler S, Bailey M, McKeever W. Extended constant power speed range of the brushless DC motor through dual mode inverter control. 2001. Oak Ridge National Lab., UT-Battelle, LLC, USA.
  • [6] Bailey M, et al. Dual mode inverter control test verification. 2001. Oak Ridge National Lab., UT-Battelle, LLC, ORNUTM-20001172.
  • [7] Ostovic V. Memory motors-a new class of controllable flux PM machines for a true wide speed operation. In: IEEE Ind. Appl. Conf.; Oct. 2001; Chicago, IL, USA. pp. 2577-2584.
  • [8] Hemmati S, Barigh M. A new approach for field weakening in a surface mounted permanent magnet synchronous motor by winding switching. 27th Iranian Conf. Elect. Eng. (ICEE'19); May 2019; Yazd, Iran. pp. 509-514.
  • [9] Hemmati S, Lipo TA. Field weakening of a surface mounted permanent magnet motor by winding switching. Int. Symp. Power Electron, Elect. Drives, Auto. Motion; Jun. 2012; Sorrento, Italy. pp. 736-740.
  • [10] Sin S, Roshanzamir A, Kwon B. I. Improvement of the Constant-Power Speed Range of Surface-Permanent Magnet Machine Using Winding Switching. IEEE Access 2021; 9: 32298-32309.
  • [11] Im SH, Park GM, Gu BG. Novel Winding Changeover Method for A High Efficiency AC Motor Drive. IEEE Energy Convers. Cong. Expo. (ECCE'19); Oct. 2019; Baltimore, MD, USA. pp. 2347-2352.
  • [12] Vido L, Amara Y, Gabsi M, Lecrivain M, Chabot F. Compared performances of homopolar and bipolar hybrid excitation synchronous machines. Proc. IEEE Ind. Appl. Conf.; Oct. 2005; Hong Kong, China. pp. 1555–1560.
  • [13] Vido L, Amara Y, Gabsi M, Lecrivain M, Chabot F. Homopolar and bipolar hybrid excitation synchronous machines. IEEE Int. Conf. Elect. Mach. Drives; May 2005; San Antonio, TX, USA. pp. 1212–1218.
  • [14] Chan CC, Chau KT, Jiang JZ, Xia W, Zhu M, Zhang R. Novel permanent magnet motor drives for electric vehicles. IEEE Trans. Ind. Electron., 1996; 43(2): 331–339.
  • [15] Tapia JA, Leonardi F, Lipo TA. Consequent-pole permanent magnet machine with extended field-weakening capability. IEEE Trans. Ind. Appl. 2003; 39(6): 1704–1709.
  • [16] Luo X, Lipo TA. A synchronous/permanent magnet hybrid AC machine. IEEE Trans. Energy Convers. 2000; 15(2): 203–210.
  • [17] Fodorean D, Djerdir A, Viorel IA, Miraoui A. A double excited synchronous machine for direct drive application—Design and prototype tests. IEEE Trans. Energy Convers. 2007; 22(3): 656–665.
  • [18] Li Y, Lipo T. A. A doubly salient permanent magnet motor capable of field weakening. Proc. IEEE Power Electron. Spec. Conf.; Jun. 1995; Atlanta, GA, USA. pp. 565–571.
  • [19] Kosaka T, Kano Y, Matsui N, Pollock C. A novel multi-pole permanent magnet synchronous machine with SMC bypass core for magnet flux and SMC field-pole core with toroidal coil for independent field strengthening/weakening. Proc. Eur. Conf. Power Electron. Appl.; Sep. 2005; Dresden, Germany. pp. 1–10.
  • [20] Zhu ZQ, Al-Ani M. MJ, Liu X, Lee B. A Mechanical Flux Weakening Method for Switched Flux Permanent Magnet Machines. IEEE Trans. Energy Convers 2015; 30(2): 806-815.
  • [21] Capponi FG, Donato G, Caricchi F. Recent advances in axial-flux permanent-magnet machine technology. IEEE Trans. Ind. Appl. 2012; 48(6): 2190–2205.
  • [22] Capponi FG, Terrigi R. Caricchi F, Ferraro L. Active output voltage regulation for an ironless axial-flux PM automotive alternator with electromechanical flux weakening. IEEE Trans. Ind. Appl. 2009; 45(5): 1785–1793.
  • [23] Zhou G, Miyazaki T, Kawamata S, Kaneko D, Hino N. Development of variable magnetic flux motor suitable for electric vehicle. In: Proc. Int. Power Electron. Conf.; Jun. 2010; Sapporo, Japan. pp. 2171–2174.
  • [24] Lei M, Sanada M, Morimoto S, Takeda Y, Matsui N. High efficiency adjustable speed control of IPMSM with variable permanent magnet flux linkage. In: Proc. Conf. Rec. IEEE IAS Annu. Meeting; Oct. 1999; Phoenix, AZ, USA. pp. 881–887.
  • [25] Lei M, Sanada M, Morimoto S, Takeda Y. Advantages of IPMSM with adjustable PM armature flux linkage in efficiency improvement an operating range extension. In: Proc. Power Convers. Conf.; Apr. 2002; Osaka, Japan. pp. 136–141.
  • [26] Kou B, Li C, Cheng S. Flux-weakening-characteristic analysis of a new permanent-magnet synchronous motor used for electric vehicles. IEEE Trans. Plasma Sci. 2011; 39(1): 511–515.
  • [27] Shakal A, Yuefeng L, Lipo TA. A permanent magnet AC machine structure with true field weakening capability. In: Proc. IEEE Int. Symp. Ind. Electron.; Jun. 1993; Budapest, Hungary. pp. 19–24.
  • [28] Ostovic V. Memory motor. IEEE Trans. Ind. Appl. 2003; 9(1): 52–61.
  • [29] Ostovic V. Pole-changing permanent magnet machines. IEEE Trans. Ind. Appl. 2002; 38(6): 1493–1499.
  • [30] Hengchuan L, Heyun L, Zhu ZQ, Mingming H, Ping J. Permanent magnet remagnetizing physics of a variable flux memory motor. IEEE Trans. Magn. 2010; 46(6): 1679–1682.
  • [31] Yu C, Chau K.T. Design, analysis, and control of DC-excited memory motor. IEEE Trans. Energy Convers. 2011; 26(2): 479–489.
  • [32] Yu C, Chau KT, Liu X, Jiang JZ. A flux-mnemonic permanent magnet brushless motor for electric vehicles. IEEE J. Appl. Phys. 2008; 103(7): 103–106.
  • [33] Swamy MM, Kume T, Maemura A, Morimoto S. Extended high speed operation via electronic winding-change method for AC motors. IEEE Trans. Ind. Appl. 2006; 42(3): 742–752.
  • [34] Ilhan E, Gysen BLJ, Paulides JJH, Lomonova EA. Analytical hybrid model for flux switching permanent magnet machines. IEEE Trans. Magn. 2010; 46(6): 1762–1765.
  • [35] Copt F, Raujo DM, Koechli C, Perriard Y. Current control strategy for dynamic winding reconfiguration of slotless brushless DC motors. IEEE Trans. Ind. Appl. 2019; 55(1): 417–425.
  • [36] Im SH, Gu BG. A snubberless solid-state tap changer for permanent magnet synchronous motors. IEEE Trans. Power Electron. 2020. 35(11): 12143–12152.
  • [37] He S, Li Q, Tong R, Shi G. Transformer economic operation control system based on zero-crossing switching; In: IEEE Advanced Inform. Technol. Electron. Autom. Control Conf. (IAEAC'15); Dec. 2015; Chongqing, China. pp. 508-512.
  • [38] Nian H, Zhou Y. Investigation and Suppression of Current Zero Crossing Phenomenon for a Semicontrolled Open-Winding PMSG System. IEEE Trans. Power Electron. 2017; 32(1): 602-612.
  • [39] Olszewski M. Evaluation of the 2010 Toyota Prius hybrid synergy drive system. 2011; Oak Ridge Nat. Lab. U.S. Dept. Energy.
  • [40] Gundogdu T. Design and Analysis of Double Fed Interior Permanent Magnet Machines for Traction Applications. In: 2022 IEEE IAS Global Conf. Emerging Technol. (GlobConET'22); May 2022; Arad, Romania. pp. 1-8.
  • [41] Gundogdu T, Komurgoz G. Influence of design parameters on flux-weakening performance of interior permanent magnet machines with novel semi-overlapping windings. IET Elect. Power Appl. 2020; 14: 2547-2563.

Improving the Flux-Weakening Capability of Interior Permanent Magnet Machines by Number of Turns Changing Methodology

Year 2022, , 375 - 394, 30.09.2022
https://doi.org/10.55525/tjst.1122007

Abstract

In this paper, an interior permanent magnet (IPM) machine having two sets of windings with different number of turns is developed to improve the limited flux-weakening (FW) capability and efficiency, simultaneously. The flux-adjustable range appears to be somewhat limited because of the limited maximum inverter voltage and high magnetic saturation, which degrades the FW capability. To address its restricted FW capability, a unique winding-switching concept is introduced, in which auxiliary coils with lower turns alternately function as the secondary armature winding, resulting in flux-linkage reduction within the same phase. Winding topologies, design considerations, the FW principle, and FW computations have all been addressed. To validate the feasibility of the proposed FW enhancement strategy, a co-simulation procedure based on the 2D finite element method (FEM) and MatLab codes is used to determine the steady-state and FW performance characteristics of IPM machines with various winding topologies. All steady-state and FW performance characteristics of the conventional IPM machine and the proposed IPM machines have been compared quantitatively. Furthermore, to ensure the accuracy of the analytical and numerical calculations provided in this study, the predicted efficiency map of the original Toyota Prius 2010 IPM machine is validated using the efficiency measurements provided.

References

  • [1] Jans TM. Flux-weakening regime operation of an interior permanent magnet synchronous motor drive. IEEE Trans. Ind. Appl. 1987; IA-23(4): 681-689.
  • [2] Sebastian T, Siemon GR. Operating limits of inverter-driven permanent magnet motor drives. IEEE Trans. Ind. Applicat. 1987; 23: 327-333.
  • [3] Schiferl RF, Lipo TA. Power capability of salient pole permanent magnet synchronous motor in variable speed drive applications. IEEE Trans. Ind. Applicat. 1990; 26: 115-123.
  • [4] Sneyers B, Novotny DW, Lipo TA. Field weakening in buried permanent magnet Ac motor drives. IEEE Trans. Ind. Applicat. 1985; 21: 398-407.
  • [5] Lawler S, Bailey M, McKeever W. Extended constant power speed range of the brushless DC motor through dual mode inverter control. 2001. Oak Ridge National Lab., UT-Battelle, LLC, USA.
  • [6] Bailey M, et al. Dual mode inverter control test verification. 2001. Oak Ridge National Lab., UT-Battelle, LLC, ORNUTM-20001172.
  • [7] Ostovic V. Memory motors-a new class of controllable flux PM machines for a true wide speed operation. In: IEEE Ind. Appl. Conf.; Oct. 2001; Chicago, IL, USA. pp. 2577-2584.
  • [8] Hemmati S, Barigh M. A new approach for field weakening in a surface mounted permanent magnet synchronous motor by winding switching. 27th Iranian Conf. Elect. Eng. (ICEE'19); May 2019; Yazd, Iran. pp. 509-514.
  • [9] Hemmati S, Lipo TA. Field weakening of a surface mounted permanent magnet motor by winding switching. Int. Symp. Power Electron, Elect. Drives, Auto. Motion; Jun. 2012; Sorrento, Italy. pp. 736-740.
  • [10] Sin S, Roshanzamir A, Kwon B. I. Improvement of the Constant-Power Speed Range of Surface-Permanent Magnet Machine Using Winding Switching. IEEE Access 2021; 9: 32298-32309.
  • [11] Im SH, Park GM, Gu BG. Novel Winding Changeover Method for A High Efficiency AC Motor Drive. IEEE Energy Convers. Cong. Expo. (ECCE'19); Oct. 2019; Baltimore, MD, USA. pp. 2347-2352.
  • [12] Vido L, Amara Y, Gabsi M, Lecrivain M, Chabot F. Compared performances of homopolar and bipolar hybrid excitation synchronous machines. Proc. IEEE Ind. Appl. Conf.; Oct. 2005; Hong Kong, China. pp. 1555–1560.
  • [13] Vido L, Amara Y, Gabsi M, Lecrivain M, Chabot F. Homopolar and bipolar hybrid excitation synchronous machines. IEEE Int. Conf. Elect. Mach. Drives; May 2005; San Antonio, TX, USA. pp. 1212–1218.
  • [14] Chan CC, Chau KT, Jiang JZ, Xia W, Zhu M, Zhang R. Novel permanent magnet motor drives for electric vehicles. IEEE Trans. Ind. Electron., 1996; 43(2): 331–339.
  • [15] Tapia JA, Leonardi F, Lipo TA. Consequent-pole permanent magnet machine with extended field-weakening capability. IEEE Trans. Ind. Appl. 2003; 39(6): 1704–1709.
  • [16] Luo X, Lipo TA. A synchronous/permanent magnet hybrid AC machine. IEEE Trans. Energy Convers. 2000; 15(2): 203–210.
  • [17] Fodorean D, Djerdir A, Viorel IA, Miraoui A. A double excited synchronous machine for direct drive application—Design and prototype tests. IEEE Trans. Energy Convers. 2007; 22(3): 656–665.
  • [18] Li Y, Lipo T. A. A doubly salient permanent magnet motor capable of field weakening. Proc. IEEE Power Electron. Spec. Conf.; Jun. 1995; Atlanta, GA, USA. pp. 565–571.
  • [19] Kosaka T, Kano Y, Matsui N, Pollock C. A novel multi-pole permanent magnet synchronous machine with SMC bypass core for magnet flux and SMC field-pole core with toroidal coil for independent field strengthening/weakening. Proc. Eur. Conf. Power Electron. Appl.; Sep. 2005; Dresden, Germany. pp. 1–10.
  • [20] Zhu ZQ, Al-Ani M. MJ, Liu X, Lee B. A Mechanical Flux Weakening Method for Switched Flux Permanent Magnet Machines. IEEE Trans. Energy Convers 2015; 30(2): 806-815.
  • [21] Capponi FG, Donato G, Caricchi F. Recent advances in axial-flux permanent-magnet machine technology. IEEE Trans. Ind. Appl. 2012; 48(6): 2190–2205.
  • [22] Capponi FG, Terrigi R. Caricchi F, Ferraro L. Active output voltage regulation for an ironless axial-flux PM automotive alternator with electromechanical flux weakening. IEEE Trans. Ind. Appl. 2009; 45(5): 1785–1793.
  • [23] Zhou G, Miyazaki T, Kawamata S, Kaneko D, Hino N. Development of variable magnetic flux motor suitable for electric vehicle. In: Proc. Int. Power Electron. Conf.; Jun. 2010; Sapporo, Japan. pp. 2171–2174.
  • [24] Lei M, Sanada M, Morimoto S, Takeda Y, Matsui N. High efficiency adjustable speed control of IPMSM with variable permanent magnet flux linkage. In: Proc. Conf. Rec. IEEE IAS Annu. Meeting; Oct. 1999; Phoenix, AZ, USA. pp. 881–887.
  • [25] Lei M, Sanada M, Morimoto S, Takeda Y. Advantages of IPMSM with adjustable PM armature flux linkage in efficiency improvement an operating range extension. In: Proc. Power Convers. Conf.; Apr. 2002; Osaka, Japan. pp. 136–141.
  • [26] Kou B, Li C, Cheng S. Flux-weakening-characteristic analysis of a new permanent-magnet synchronous motor used for electric vehicles. IEEE Trans. Plasma Sci. 2011; 39(1): 511–515.
  • [27] Shakal A, Yuefeng L, Lipo TA. A permanent magnet AC machine structure with true field weakening capability. In: Proc. IEEE Int. Symp. Ind. Electron.; Jun. 1993; Budapest, Hungary. pp. 19–24.
  • [28] Ostovic V. Memory motor. IEEE Trans. Ind. Appl. 2003; 9(1): 52–61.
  • [29] Ostovic V. Pole-changing permanent magnet machines. IEEE Trans. Ind. Appl. 2002; 38(6): 1493–1499.
  • [30] Hengchuan L, Heyun L, Zhu ZQ, Mingming H, Ping J. Permanent magnet remagnetizing physics of a variable flux memory motor. IEEE Trans. Magn. 2010; 46(6): 1679–1682.
  • [31] Yu C, Chau K.T. Design, analysis, and control of DC-excited memory motor. IEEE Trans. Energy Convers. 2011; 26(2): 479–489.
  • [32] Yu C, Chau KT, Liu X, Jiang JZ. A flux-mnemonic permanent magnet brushless motor for electric vehicles. IEEE J. Appl. Phys. 2008; 103(7): 103–106.
  • [33] Swamy MM, Kume T, Maemura A, Morimoto S. Extended high speed operation via electronic winding-change method for AC motors. IEEE Trans. Ind. Appl. 2006; 42(3): 742–752.
  • [34] Ilhan E, Gysen BLJ, Paulides JJH, Lomonova EA. Analytical hybrid model for flux switching permanent magnet machines. IEEE Trans. Magn. 2010; 46(6): 1762–1765.
  • [35] Copt F, Raujo DM, Koechli C, Perriard Y. Current control strategy for dynamic winding reconfiguration of slotless brushless DC motors. IEEE Trans. Ind. Appl. 2019; 55(1): 417–425.
  • [36] Im SH, Gu BG. A snubberless solid-state tap changer for permanent magnet synchronous motors. IEEE Trans. Power Electron. 2020. 35(11): 12143–12152.
  • [37] He S, Li Q, Tong R, Shi G. Transformer economic operation control system based on zero-crossing switching; In: IEEE Advanced Inform. Technol. Electron. Autom. Control Conf. (IAEAC'15); Dec. 2015; Chongqing, China. pp. 508-512.
  • [38] Nian H, Zhou Y. Investigation and Suppression of Current Zero Crossing Phenomenon for a Semicontrolled Open-Winding PMSG System. IEEE Trans. Power Electron. 2017; 32(1): 602-612.
  • [39] Olszewski M. Evaluation of the 2010 Toyota Prius hybrid synergy drive system. 2011; Oak Ridge Nat. Lab. U.S. Dept. Energy.
  • [40] Gundogdu T. Design and Analysis of Double Fed Interior Permanent Magnet Machines for Traction Applications. In: 2022 IEEE IAS Global Conf. Emerging Technol. (GlobConET'22); May 2022; Arad, Romania. pp. 1-8.
  • [41] Gundogdu T, Komurgoz G. Influence of design parameters on flux-weakening performance of interior permanent magnet machines with novel semi-overlapping windings. IET Elect. Power Appl. 2020; 14: 2547-2563.
There are 41 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section TJST
Authors

Tayfun Gündoğdu 0000-0002-7150-1860

Publication Date September 30, 2022
Submission Date June 1, 2022
Published in Issue Year 2022

Cite

APA Gündoğdu, T. (2022). Improving the Flux-Weakening Capability of Interior Permanent Magnet Machines by Number of Turns Changing Methodology. Turkish Journal of Science and Technology, 17(2), 375-394. https://doi.org/10.55525/tjst.1122007
AMA Gündoğdu T. Improving the Flux-Weakening Capability of Interior Permanent Magnet Machines by Number of Turns Changing Methodology. TJST. September 2022;17(2):375-394. doi:10.55525/tjst.1122007
Chicago Gündoğdu, Tayfun. “Improving the Flux-Weakening Capability of Interior Permanent Magnet Machines by Number of Turns Changing Methodology”. Turkish Journal of Science and Technology 17, no. 2 (September 2022): 375-94. https://doi.org/10.55525/tjst.1122007.
EndNote Gündoğdu T (September 1, 2022) Improving the Flux-Weakening Capability of Interior Permanent Magnet Machines by Number of Turns Changing Methodology. Turkish Journal of Science and Technology 17 2 375–394.
IEEE T. Gündoğdu, “Improving the Flux-Weakening Capability of Interior Permanent Magnet Machines by Number of Turns Changing Methodology”, TJST, vol. 17, no. 2, pp. 375–394, 2022, doi: 10.55525/tjst.1122007.
ISNAD Gündoğdu, Tayfun. “Improving the Flux-Weakening Capability of Interior Permanent Magnet Machines by Number of Turns Changing Methodology”. Turkish Journal of Science and Technology 17/2 (September 2022), 375-394. https://doi.org/10.55525/tjst.1122007.
JAMA Gündoğdu T. Improving the Flux-Weakening Capability of Interior Permanent Magnet Machines by Number of Turns Changing Methodology. TJST. 2022;17:375–394.
MLA Gündoğdu, Tayfun. “Improving the Flux-Weakening Capability of Interior Permanent Magnet Machines by Number of Turns Changing Methodology”. Turkish Journal of Science and Technology, vol. 17, no. 2, 2022, pp. 375-94, doi:10.55525/tjst.1122007.
Vancouver Gündoğdu T. Improving the Flux-Weakening Capability of Interior Permanent Magnet Machines by Number of Turns Changing Methodology. TJST. 2022;17(2):375-94.