Research Article
BibTex RIS Cite

Effect on Thermal and Structural Properties of Element Content in CuAlBe Shape Memory Alloys Irradiated with a Constant Gamma Radiation Dose

Year 2023, , 223 - 231, 29.03.2023
https://doi.org/10.55525/tjst.1245977

Abstract

Since gamma radiation is a type of radiation that can change the structural properties of materials, CuAlBe shape memory alloy with two different weight percentages was used in this study. CuAlBe shape memory alloys were irradiated with a constant gamma radiation dose of 40 kGy, and the resulting thermal and structural changes in the alloys were investigated. Changes in enthalpy and in the transformation temperature of the alloys were determined by differential scanning calorimetry (DSC), and thermodynamic parameters of alloy samples were calculated. Microstructural changes were determined by X-ray analysis. Microstructural changes were verified by metallographic observations, and microhardness measurements were taken. The study investigated to what extent the physical parameters of CuAlBe shape memory alloys changed depending on the alloying elements when subjected to a constant irradiation dose.

Supporting Institution

Firat Universitesi

Project Number

FF.19.09

Thanks

The study carried out was supported by Firat University Scientific Research Projects Unit (FÜBAP) under project number FF.19.09.

References

  • Was GS. Fundamentals of radiation materials science: Metals and Alloys, Springer-Verlag Berlin Heidelberg 2007.
  • Sun Y, Chmielewski AG. Applications of ionizing radiation in materials. Vol.1 Institute of Nuclear Chemistry and Technology Warszawa 2017.
  • Mansur LK, Bloom EE. Radiation effects in reactor structural alloys. J Met 1982; 23-31.
  • Chernov IP, Mamontov AP, Botaki AA, Cherdantsev PA, Chakhlov BV, Sharov SR. Anomalous effects of small doses of ionizing radiation in metals and alloys. Plenum Publishing Corporation 1985; 497-499. (Translated from Atomnaya Energiya, 1984; 57: 56-58.
  • Butler D. Nuclear power’s new dawn, Nature 2004; 429: 238–240.
  • Oliveria JP, Zeng Z, Berveiller S, Bouscaud D, Braz Fernandes FM, Miranda RM, Zhou N. Laser welding of Cu-Al-Be shape memory alloys: Microstructure and mechanical properties. Mater Des 2018; 148: 145-152.
  • Shelyakov AV, Sitnikov NN, Sheyfer DV, Borodako KA, Menushenkov AP, Fominski VY. The formation of the two-way shape memory effect in rapidly quenched TiNiCu alloy under laser radiation. Smart Mater Struct 2015; 24 (11): 1-7.
  • Aversa R, Tamburrino F, Petrescu RV, Petrescu FI, Artur M, Chen G, Apicella A. Biomechanically inspired shape memory effect machines driven by muscle like acting NiTi alloys. Am J of Appl Sci 2016; 13: 1264-1271.
  • Guniputi NN, Murigendrappa SM. Influence of Gd on the microstructure, mechanical and shape memory properties of Cu-Al-Be polycrystalline shape memory alloy. Mat Sci Eng A 2018; 737 245-252.
  • Saud SN, Hamzah E, Abubakar TA, Refaei A, Hosseinian R. The influence of γ-irradiation on the structure and properties of the Cu-11.5 wt. % Al- 4 wt. % Ni shape memory alloys. Adv Mater Res 2014; 845: 128-132.
  • Wang ZG, Zu XT, Wu JH, Liu LJ, Mo HQ, Huo Y. Electron irradiation-induced evolution of the martensitic transformation characteristics in a CuZnAl shape memory alloy. J Alloys Compd 2004; 364: 171-175.
  • Castro ML, Romero R. Isothermal decomposition of the Cu-22.72 Al-3.55 Be at.% alloy. Mat Sci Eng A 2000; 287: 66-71.
  • Silva RAG, Adorno AT, Magdelena AG, Carvalho TM, Stipcich M, Cuniberti A, Castro ML. Thermal behavior of the Cu-22.55 at.% Al alloy with small Ag additions. J Therm Anal Calorim 2011;103: 459-63.
  • Balo ŞN, & Ceylan M. Effects of Be content on some characteristics of Cu-Al-Be shape memory alloys. J Mater Process Technol 2002;124: 200-208.
  • Montecinos S, Simison SN. Study of the corrosion products formed on multiphase CuAlBe alloy in a sodium chloride solution by micro-Raman and and in situ AFM measurements. Appl Surf Sci 2011; 257: 7732-7738.
  • Montecinos S, Cuniberti A, Castro ML, Boeri R. Phase transformations during continuous cooling of polycrystalline β-CuAlBe alloys. J Alloys Compd 2009; 467: 278-283.
  • Balo ŞN, Eskil M. Thermodynamic and crystallographic properties of gamma radiated shape memory Cu-Al-Be alloy. Appl Phys A 2021; 127(8): 1-10.
  • Giurgiutiu V, Zagrai A. The use of smart materials technologies in radiation environment and nuclear industry. SPIE's 7th International Symposium on Smart Structures and Materials and 5th International Symposium on Nondestructive Evaluation and Health Monitoring of Aging Infrastructure; 5-9 March 2000; Newport Beach, CA. 3985-103.
  • Zuniga-Flores H, Belkahla S, Lovey FC, Guenin G. The two way effect of Cu-Al-Be Alloys: General characteristics and aging. ICOMAT,92 Procedings of the International Conference on Martensitic Transformations, Monterey, California, USA 1992; 1053-1058.
  • Balo ŞN, Ceylan M, Aksoy M. Effects of deformation on the microstructure of Cu-Al-Be shape memory alloy. Mater Sci Eng A 2001; 311: 151-156.
  • Lagoudas DC. (Ed.), Shape memory alloys: Modeling and engineering applications, Springer Science & Business Media 2008.
  • Lecce L. Shape memory alloy engineering: For aerospace, structural and biomedical applications, Elsevier 2014.
  • Wayman C, Tong H. On the equilibrium temperature in thermoelastic martensitic transformations. Scr Metall 1977; 11(5): 341–343.
  • Canbay CA, Karaduman O, Özkul I, Ünlü N. Modifying thermal and structural characteristics of CuAlFeMn shape memory alloy and a hypothetical analysis to optimize surface-diffusion annealing temperature. JMEPEG 2020; 29: 7993-8005.
  • Tong H, Wayman C. Characteristic temperatures and other properties of thermoelastic martensites. Acta Metall 1974; 22: 887–896.
  • Canbay CA, Karaduman O, Ünlü N, Özkul I. An exploratory research of calorimetric and structural shape memory effect characteristics of Cu–Al–Sn alloy. Physica B: Condensed Matter 2020; 580: 411932.
  • Romero R, Pelegrina JL. Change of entropy in the martensitic transformation and its dependence in Cu-based shape memory alloys. Mater Sci Eng A 2003; 354: 243-250.
  • Ergen S, Uzun O, Yilmaz F, Kiliçaslan MF. Shape memory properties and microstructural evolution of rapidly solidified CuAlBe alloys. Mater Charact 2013; 80: 92-97.
  • Mallik US, Sampath V. Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy. J Alloys Compd 2009; 469(1-2): 156-163.
  • Karaduman O, Özkul I, Canbay C.A. Shape memory effect characterization of a ternary CuAlNi high temperature SMA ribbons produced by melt spinning method. Adv Eng Sci 2021; 1: 26-33.
  • Canbay CA, Karaduman O, Ünlü N, Özkul I. Study on basic characteristics of CuAlBe shape memory alloy. Brazilian J Phys 2021; 51: 13-18.
  • Cullity BD. Elements of X-ray diffraction, Addison-Wesley Publishing Company, Massachussets, 1978.
  • Balo ŞN, Yakuphanoglu F. The effects of Cr on isothermal oxidation behavior of Fe-30Mn-6Si alloy, Thermochim Acta 2013; 560: 43-46.
  • Sánchez-Arévalo FM, Pulos G. Use of digital image correlation to determine the mechanical behavior of materials. Mater Charact 2008; 59(11): 1572-1579.
  • Araya R, Marivil M, Mir C, Moroni O, Sepulveda A. Temperature and grain size effects on the behavior of CuAlBe SMA wires under cyclic loading. Mater Sci Eng A 2008; 496(1-2): 209-213.
  • Montecinos S, Cuniberti A. Effects of grain size on plastic deformation in a β CuAlBe shape memory alloy. Mater Sci Eng A 2014; 600: 176-180.
  • Albuquerque VHC de, Melo TADA, Gomes RM, Lima SJG de, Tavares JMR. Grain size and temperature influence on the toughness of a CuAlBe shape memory alloy. Mater Sci Eng A 2010; 528(1): 459-466.
  • Dunne D, Morin M, Gonzalez C, Guenin G. The effect of quenching treatment on the reversible martensitic transformation in CuAlBe alloys. Mater Sci Eng A 2004; 378(1-2): 257-262.
Year 2023, , 223 - 231, 29.03.2023
https://doi.org/10.55525/tjst.1245977

Abstract

Project Number

FF.19.09

References

  • Was GS. Fundamentals of radiation materials science: Metals and Alloys, Springer-Verlag Berlin Heidelberg 2007.
  • Sun Y, Chmielewski AG. Applications of ionizing radiation in materials. Vol.1 Institute of Nuclear Chemistry and Technology Warszawa 2017.
  • Mansur LK, Bloom EE. Radiation effects in reactor structural alloys. J Met 1982; 23-31.
  • Chernov IP, Mamontov AP, Botaki AA, Cherdantsev PA, Chakhlov BV, Sharov SR. Anomalous effects of small doses of ionizing radiation in metals and alloys. Plenum Publishing Corporation 1985; 497-499. (Translated from Atomnaya Energiya, 1984; 57: 56-58.
  • Butler D. Nuclear power’s new dawn, Nature 2004; 429: 238–240.
  • Oliveria JP, Zeng Z, Berveiller S, Bouscaud D, Braz Fernandes FM, Miranda RM, Zhou N. Laser welding of Cu-Al-Be shape memory alloys: Microstructure and mechanical properties. Mater Des 2018; 148: 145-152.
  • Shelyakov AV, Sitnikov NN, Sheyfer DV, Borodako KA, Menushenkov AP, Fominski VY. The formation of the two-way shape memory effect in rapidly quenched TiNiCu alloy under laser radiation. Smart Mater Struct 2015; 24 (11): 1-7.
  • Aversa R, Tamburrino F, Petrescu RV, Petrescu FI, Artur M, Chen G, Apicella A. Biomechanically inspired shape memory effect machines driven by muscle like acting NiTi alloys. Am J of Appl Sci 2016; 13: 1264-1271.
  • Guniputi NN, Murigendrappa SM. Influence of Gd on the microstructure, mechanical and shape memory properties of Cu-Al-Be polycrystalline shape memory alloy. Mat Sci Eng A 2018; 737 245-252.
  • Saud SN, Hamzah E, Abubakar TA, Refaei A, Hosseinian R. The influence of γ-irradiation on the structure and properties of the Cu-11.5 wt. % Al- 4 wt. % Ni shape memory alloys. Adv Mater Res 2014; 845: 128-132.
  • Wang ZG, Zu XT, Wu JH, Liu LJ, Mo HQ, Huo Y. Electron irradiation-induced evolution of the martensitic transformation characteristics in a CuZnAl shape memory alloy. J Alloys Compd 2004; 364: 171-175.
  • Castro ML, Romero R. Isothermal decomposition of the Cu-22.72 Al-3.55 Be at.% alloy. Mat Sci Eng A 2000; 287: 66-71.
  • Silva RAG, Adorno AT, Magdelena AG, Carvalho TM, Stipcich M, Cuniberti A, Castro ML. Thermal behavior of the Cu-22.55 at.% Al alloy with small Ag additions. J Therm Anal Calorim 2011;103: 459-63.
  • Balo ŞN, & Ceylan M. Effects of Be content on some characteristics of Cu-Al-Be shape memory alloys. J Mater Process Technol 2002;124: 200-208.
  • Montecinos S, Simison SN. Study of the corrosion products formed on multiphase CuAlBe alloy in a sodium chloride solution by micro-Raman and and in situ AFM measurements. Appl Surf Sci 2011; 257: 7732-7738.
  • Montecinos S, Cuniberti A, Castro ML, Boeri R. Phase transformations during continuous cooling of polycrystalline β-CuAlBe alloys. J Alloys Compd 2009; 467: 278-283.
  • Balo ŞN, Eskil M. Thermodynamic and crystallographic properties of gamma radiated shape memory Cu-Al-Be alloy. Appl Phys A 2021; 127(8): 1-10.
  • Giurgiutiu V, Zagrai A. The use of smart materials technologies in radiation environment and nuclear industry. SPIE's 7th International Symposium on Smart Structures and Materials and 5th International Symposium on Nondestructive Evaluation and Health Monitoring of Aging Infrastructure; 5-9 March 2000; Newport Beach, CA. 3985-103.
  • Zuniga-Flores H, Belkahla S, Lovey FC, Guenin G. The two way effect of Cu-Al-Be Alloys: General characteristics and aging. ICOMAT,92 Procedings of the International Conference on Martensitic Transformations, Monterey, California, USA 1992; 1053-1058.
  • Balo ŞN, Ceylan M, Aksoy M. Effects of deformation on the microstructure of Cu-Al-Be shape memory alloy. Mater Sci Eng A 2001; 311: 151-156.
  • Lagoudas DC. (Ed.), Shape memory alloys: Modeling and engineering applications, Springer Science & Business Media 2008.
  • Lecce L. Shape memory alloy engineering: For aerospace, structural and biomedical applications, Elsevier 2014.
  • Wayman C, Tong H. On the equilibrium temperature in thermoelastic martensitic transformations. Scr Metall 1977; 11(5): 341–343.
  • Canbay CA, Karaduman O, Özkul I, Ünlü N. Modifying thermal and structural characteristics of CuAlFeMn shape memory alloy and a hypothetical analysis to optimize surface-diffusion annealing temperature. JMEPEG 2020; 29: 7993-8005.
  • Tong H, Wayman C. Characteristic temperatures and other properties of thermoelastic martensites. Acta Metall 1974; 22: 887–896.
  • Canbay CA, Karaduman O, Ünlü N, Özkul I. An exploratory research of calorimetric and structural shape memory effect characteristics of Cu–Al–Sn alloy. Physica B: Condensed Matter 2020; 580: 411932.
  • Romero R, Pelegrina JL. Change of entropy in the martensitic transformation and its dependence in Cu-based shape memory alloys. Mater Sci Eng A 2003; 354: 243-250.
  • Ergen S, Uzun O, Yilmaz F, Kiliçaslan MF. Shape memory properties and microstructural evolution of rapidly solidified CuAlBe alloys. Mater Charact 2013; 80: 92-97.
  • Mallik US, Sampath V. Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy. J Alloys Compd 2009; 469(1-2): 156-163.
  • Karaduman O, Özkul I, Canbay C.A. Shape memory effect characterization of a ternary CuAlNi high temperature SMA ribbons produced by melt spinning method. Adv Eng Sci 2021; 1: 26-33.
  • Canbay CA, Karaduman O, Ünlü N, Özkul I. Study on basic characteristics of CuAlBe shape memory alloy. Brazilian J Phys 2021; 51: 13-18.
  • Cullity BD. Elements of X-ray diffraction, Addison-Wesley Publishing Company, Massachussets, 1978.
  • Balo ŞN, Yakuphanoglu F. The effects of Cr on isothermal oxidation behavior of Fe-30Mn-6Si alloy, Thermochim Acta 2013; 560: 43-46.
  • Sánchez-Arévalo FM, Pulos G. Use of digital image correlation to determine the mechanical behavior of materials. Mater Charact 2008; 59(11): 1572-1579.
  • Araya R, Marivil M, Mir C, Moroni O, Sepulveda A. Temperature and grain size effects on the behavior of CuAlBe SMA wires under cyclic loading. Mater Sci Eng A 2008; 496(1-2): 209-213.
  • Montecinos S, Cuniberti A. Effects of grain size on plastic deformation in a β CuAlBe shape memory alloy. Mater Sci Eng A 2014; 600: 176-180.
  • Albuquerque VHC de, Melo TADA, Gomes RM, Lima SJG de, Tavares JMR. Grain size and temperature influence on the toughness of a CuAlBe shape memory alloy. Mater Sci Eng A 2010; 528(1): 459-466.
  • Dunne D, Morin M, Gonzalez C, Guenin G. The effect of quenching treatment on the reversible martensitic transformation in CuAlBe alloys. Mater Sci Eng A 2004; 378(1-2): 257-262.
There are 38 citations in total.

Details

Primary Language English
Journal Section TJST
Authors

Şahide Nevin Balo 0000-0001-5632-9559

Abdulvahap Orhan 0000-0001-6190-9179

Project Number FF.19.09
Publication Date March 29, 2023
Submission Date February 1, 2023
Published in Issue Year 2023

Cite

APA Balo, Ş. N., & Orhan, A. (2023). Effect on Thermal and Structural Properties of Element Content in CuAlBe Shape Memory Alloys Irradiated with a Constant Gamma Radiation Dose. Turkish Journal of Science and Technology, 18(1), 223-231. https://doi.org/10.55525/tjst.1245977
AMA Balo ŞN, Orhan A. Effect on Thermal and Structural Properties of Element Content in CuAlBe Shape Memory Alloys Irradiated with a Constant Gamma Radiation Dose. TJST. March 2023;18(1):223-231. doi:10.55525/tjst.1245977
Chicago Balo, Şahide Nevin, and Abdulvahap Orhan. “Effect on Thermal and Structural Properties of Element Content in CuAlBe Shape Memory Alloys Irradiated With a Constant Gamma Radiation Dose”. Turkish Journal of Science and Technology 18, no. 1 (March 2023): 223-31. https://doi.org/10.55525/tjst.1245977.
EndNote Balo ŞN, Orhan A (March 1, 2023) Effect on Thermal and Structural Properties of Element Content in CuAlBe Shape Memory Alloys Irradiated with a Constant Gamma Radiation Dose. Turkish Journal of Science and Technology 18 1 223–231.
IEEE Ş. N. Balo and A. Orhan, “Effect on Thermal and Structural Properties of Element Content in CuAlBe Shape Memory Alloys Irradiated with a Constant Gamma Radiation Dose”, TJST, vol. 18, no. 1, pp. 223–231, 2023, doi: 10.55525/tjst.1245977.
ISNAD Balo, Şahide Nevin - Orhan, Abdulvahap. “Effect on Thermal and Structural Properties of Element Content in CuAlBe Shape Memory Alloys Irradiated With a Constant Gamma Radiation Dose”. Turkish Journal of Science and Technology 18/1 (March 2023), 223-231. https://doi.org/10.55525/tjst.1245977.
JAMA Balo ŞN, Orhan A. Effect on Thermal and Structural Properties of Element Content in CuAlBe Shape Memory Alloys Irradiated with a Constant Gamma Radiation Dose. TJST. 2023;18:223–231.
MLA Balo, Şahide Nevin and Abdulvahap Orhan. “Effect on Thermal and Structural Properties of Element Content in CuAlBe Shape Memory Alloys Irradiated With a Constant Gamma Radiation Dose”. Turkish Journal of Science and Technology, vol. 18, no. 1, 2023, pp. 223-31, doi:10.55525/tjst.1245977.
Vancouver Balo ŞN, Orhan A. Effect on Thermal and Structural Properties of Element Content in CuAlBe Shape Memory Alloys Irradiated with a Constant Gamma Radiation Dose. TJST. 2023;18(1):223-31.