Research Article
BibTex RIS Cite

The Effect of Using Molybdenum Profile in Columns of Steel Building Models on The Modal Parameters

Year 2023, , 415 - 424, 01.09.2023
https://doi.org/10.55525/tjst.1256534

Abstract

From past to present, building designs and materials used are developing. Especially against the destructive effects of ground movements and free vibrations on structures, many structural system designs and composite structure designs have been developed. The purpose of the composite structure design is to choose different types of materials according to the structural load-bearing system stress, in short, to choose the most advantageous material type according to the cross-sectional stresses or to eliminate the negative aspects of one material with the positive aspects of another material. It is a known fact that the dynamic performance of steel structure carrier systems is high under the influence of ground movements and free vibrations. However, in cases where the section geometry cannot be changed due to architectural concerns due to architectural design difficulties, there are cases where the rigidity of the structure is not sufficient. In such cases, profiles made of different materials other than steel can be used in order to increase the rigidity of the structure, especially in the columns, which are a very important component of the structural load-bearing elements. Therefore, in this study, the effect of using molybdenum profile instead of steel profile on modal parameters in model steel structure columns was investigated. In the light of the information obtained, a decrease of approximately 23.72 percent was observed in the period value in the 1st free vibration mode of the steel-molybdenum structure model. Thus, it is understood that the rigidity of the model steel structure system increases. In cases where it is not possible to change the architectural design in steel structures, it is recommended to use column profiles as molybdenum profiles instead of steel profiles in order to provide the necessary rigidity and increase rigidity.

References

  • Tuhta S. GFRP retrofitting effect on the dynamic characteristics of model steel structure. Steel Compos Struct 2018; 28(2): 223–231.
  • Kasımzade AA. Fundamentals of Structural Dynamics and Applications in Earthquake Engineering. Ankara, Turkey: Nobel Academic Publishing, 2018.
  • Çelebi M. GPS in dynamic monitoring of long-period structures. Soil Dynam Earthq Eng 2000; 20(5): 477-483.
  • Tuhta S. Optimal Determination of Structural Dynamical Parameters Using Ambient Vibration. KSU J Eng Sci 2018; 21(1): 55–65.
  • Keçeli A, Cevher M. Soil Dominant Period and Resonance Relation of Building Height. Journal of Applied Earthsciences 2018; 17(2): 203-224.
  • Kasımzade AA, Tuhta S, Günday F, Aydın H. Obtaining Dynamic Parameters by Using Ambient Vibration Recordings on Model of The Steel Arch Bridge. Period Polytech Civ Eng 2021; 65(2): 608-618.
  • Kao CY, Hung SL. Detection of structural damage via free vibration responses generated by approximating artificial neural networks. Comput Struct 2003; 81(28): 2631-2644.
  • Celep Z, Kumbasar N. Deprem mühendisliğine giriş ve depreme dayanıklı yapı tasarımı, İstanbul, Türkiye: İhlas Matbaacılık, 2000.
  • Celep Z. Yapı dinamiği, İstanbul, Türkiye: Beta Dağıtım, 2014.
  • İncetaş S, Tanrıkulu, K. Binaların birinci doğal titreşim periyodunun yaklaşık olarak belirlenmesi 2002.
  • Nassani, DA. A simple model for calculating the fundamental period of vibration in steel structures. APCBEE Procedia 2014; 9: 393-346.
  • Aksoylu C, Arslan, MH. Çerçeve türü betonarme binaların periyod hesaplarının farklı ampirik bağıntılara göre irdelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 2019; 8(2): 569-581.
  • Aras F, Akbaş T, Ekşi H, Çeribaşı S. Progressive damage analyses of masonry buildings by dynamic analyses, Int J Civ Eng 2020; 18: 903-917.
  • Özşahin B. Türkiye Bina Deprem Yönetmeliği 2018’de Bina Doğal Titreşim Periyodunun Belirlenmesi İçin Verilen Ampirik Formülün Donatısız Yığma Binalar İçin İrdelenmesi, Afyon Kocatepe University Journal of Science and Engineering 2020; 22(2022): 873-892.
  • Benzeşik K. Molibden Konsantrelerinin Değerlendirilmesi. MSc, İstanbul Teknik Üniversitesi, İstanbul, Türkiye. 2016.
  • Polyak DE. Molybdenum, U.S. Geological Survey 2012 Minerals Yearbook: Molybdenum (Advance Release), 2012, 50.1-50.13, U.S. Department of the Interior.
  • Durkan C, Ilie A, Saifullah MSM, Welland ME. Mechanics of nanosprings: Stiffness and Young’s modulus of molybdenum-based nanocrystals, Appl Phys Lett 2002; 80(22).
  • Chatterjee, KK. Uses of Metals and Metallic Minerals, New Delhi: New Age International (P) Limited Publishers, 2007.
  • Joshi, KD, Gupta, SC. On mechanical stability of molybdenum, High Press Res 2007; 27(2): 259-268.
  • Laribi M, Vannes AB, Treheux D. Study of mechanical behavior of molybdenum coating using sliding wear and impact tests. Wear, 2007; 262(11): 1330-1336.
  • Nakajima K, Ohno H, Kondo Y, Matsubae K, Takeda O, Miki T, Nakamura S, Nagasaka T. Simultaneous Material Flow Analysis of Nickel, Chromium, and Molybdenum Used in Alloy Steel by Means of Input–Output Analysis. Environ Sci Technol 2013; 47(9): 4653-4660.
  • Gao S, Cui X, Zhang S. Utilization of Molybdenum Tailings in Concrete Manufacturing: A Review. Appl Sci 2020; 10(1):138.
  • Kasımzade AA. Finite Element Method Fundamentals and Applications in Structural Mechanics, Ankara, Turkey: Nobel Academic Publishing, 2018.
  • Kasımzade AA. Structural Design and Analysis in The Light of Current Regulations with SAP2000 on The Basis of FEM, Ankara, Turkey: Nobel Academic Publishing, 2021.
  • Ziada M, Tuhta S, Gençbay E. H, Günday F, Tammam Y. Analysis of Tunnel Form Building Retrofitted with CFRP using Finite Element Method. Int J Trend Res Dev 2019; 3(2): 822–826.
  • Tuhta S, Günday F, Alihassan A. The Effect of CFRP Reinforced Concrete Chimney on Modal Parameters Using Finite Element Method. Int J Innov Eng Technol 2020; 7(2): 1–6.
  • Bakkour F, Tuhta S, Günday F. Determination of Modal Parameters of Reinforced Concrete Box Culvert Retrofitted with GFRP Using Finite Element Method. Int J Innov Eng Technol 2022; 9(4): 1–9.
  • Hammoud MA, Tuhta S, Günday F. Determination of Modal Parameters of Reinforced Concrete Tunnel Retrofitted with CFRP using Finite Element Method. Int J Innov Eng Technol 2022; 9(4): 10–18.

Çelik Bina Modellerinin Kolonlarında Molibden Profil Kullanımının Modal Parametrelere Etkisi

Year 2023, , 415 - 424, 01.09.2023
https://doi.org/10.55525/tjst.1256534

Abstract

Geçmişten günümüze yapı taşıyıcı sistem tasarımları ve kullanılan malzemeler gelişmektedir. Özellikle yer hareketleri ve serbest titreşimlerin yapılar üzerindeki yıkıcı etkisine karşı birçok yapı taşıyıcı sistem tasarımları ve kompozit yapı tasarımı geliştirilmiştir. Kompozit yapı tasarımındaki amaç farklı türde malzemelerin yapı taşıyıcı sistem zorlanması durumuna göre tercih edilmesi kısacası kesit zorlanmalarına göre en avantajlı malzeme türünün seçilmesi veya bir malzemenin olumsuz yönlerinin başka bir malzemenin olumlu yönleri ile giderilmesi işlemidir. Çelik yapı taşıyıcı sistemlerinin yer hareketleri ve serbest titreşimlerin etkisinde dinamik performansının yüksek olduğu bilinen bir gerçektir. Fakat mimari tasarım zorluklarına bağlı olarak mimari kaygılar nedeniyle kesit geometrisinde değişiklik yapılamaması durumlarında yapı rijitliğinin yeterli olmadığı durumlar görülmektedir. Bu gibi durumlarda özellikle yapı taşıyıcı elemanlarının çok önemli bir birleşeni olan kolonlarda yapı rijitliğini artırmak amacıyla çelik dışında farklı malzemeden üretilmiş profiller kullanılabilir. Bu nedenle bu çalışmada model çelik yapı kolonlarında çelik profil yerine molibden profil kullanımının modal parametrelere etkisi araştırılmıştır. Elde edilen bilgiler ışığında oluşturulan çelik-molibden yapı modelinin 1. serbest titreşim modunda periyot değerinde yaklaşık yüzde 23,72 oranında bir azalma gözlemlenmiştir. Böylece model çelik yapı sisteminin rijitliğinin arttığı anlaşılmaktadır. Çelik yapılarda mimari tasarımın değiştirilmesinin mümkün olmadığı durumlarda gerekli rijitliğin sağlanması ve rijitliğin artırılması amacıyla kolon profilleri çelik profil yerine molibden profil olarak kullanılması önerilmektedir.

References

  • Tuhta S. GFRP retrofitting effect on the dynamic characteristics of model steel structure. Steel Compos Struct 2018; 28(2): 223–231.
  • Kasımzade AA. Fundamentals of Structural Dynamics and Applications in Earthquake Engineering. Ankara, Turkey: Nobel Academic Publishing, 2018.
  • Çelebi M. GPS in dynamic monitoring of long-period structures. Soil Dynam Earthq Eng 2000; 20(5): 477-483.
  • Tuhta S. Optimal Determination of Structural Dynamical Parameters Using Ambient Vibration. KSU J Eng Sci 2018; 21(1): 55–65.
  • Keçeli A, Cevher M. Soil Dominant Period and Resonance Relation of Building Height. Journal of Applied Earthsciences 2018; 17(2): 203-224.
  • Kasımzade AA, Tuhta S, Günday F, Aydın H. Obtaining Dynamic Parameters by Using Ambient Vibration Recordings on Model of The Steel Arch Bridge. Period Polytech Civ Eng 2021; 65(2): 608-618.
  • Kao CY, Hung SL. Detection of structural damage via free vibration responses generated by approximating artificial neural networks. Comput Struct 2003; 81(28): 2631-2644.
  • Celep Z, Kumbasar N. Deprem mühendisliğine giriş ve depreme dayanıklı yapı tasarımı, İstanbul, Türkiye: İhlas Matbaacılık, 2000.
  • Celep Z. Yapı dinamiği, İstanbul, Türkiye: Beta Dağıtım, 2014.
  • İncetaş S, Tanrıkulu, K. Binaların birinci doğal titreşim periyodunun yaklaşık olarak belirlenmesi 2002.
  • Nassani, DA. A simple model for calculating the fundamental period of vibration in steel structures. APCBEE Procedia 2014; 9: 393-346.
  • Aksoylu C, Arslan, MH. Çerçeve türü betonarme binaların periyod hesaplarının farklı ampirik bağıntılara göre irdelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 2019; 8(2): 569-581.
  • Aras F, Akbaş T, Ekşi H, Çeribaşı S. Progressive damage analyses of masonry buildings by dynamic analyses, Int J Civ Eng 2020; 18: 903-917.
  • Özşahin B. Türkiye Bina Deprem Yönetmeliği 2018’de Bina Doğal Titreşim Periyodunun Belirlenmesi İçin Verilen Ampirik Formülün Donatısız Yığma Binalar İçin İrdelenmesi, Afyon Kocatepe University Journal of Science and Engineering 2020; 22(2022): 873-892.
  • Benzeşik K. Molibden Konsantrelerinin Değerlendirilmesi. MSc, İstanbul Teknik Üniversitesi, İstanbul, Türkiye. 2016.
  • Polyak DE. Molybdenum, U.S. Geological Survey 2012 Minerals Yearbook: Molybdenum (Advance Release), 2012, 50.1-50.13, U.S. Department of the Interior.
  • Durkan C, Ilie A, Saifullah MSM, Welland ME. Mechanics of nanosprings: Stiffness and Young’s modulus of molybdenum-based nanocrystals, Appl Phys Lett 2002; 80(22).
  • Chatterjee, KK. Uses of Metals and Metallic Minerals, New Delhi: New Age International (P) Limited Publishers, 2007.
  • Joshi, KD, Gupta, SC. On mechanical stability of molybdenum, High Press Res 2007; 27(2): 259-268.
  • Laribi M, Vannes AB, Treheux D. Study of mechanical behavior of molybdenum coating using sliding wear and impact tests. Wear, 2007; 262(11): 1330-1336.
  • Nakajima K, Ohno H, Kondo Y, Matsubae K, Takeda O, Miki T, Nakamura S, Nagasaka T. Simultaneous Material Flow Analysis of Nickel, Chromium, and Molybdenum Used in Alloy Steel by Means of Input–Output Analysis. Environ Sci Technol 2013; 47(9): 4653-4660.
  • Gao S, Cui X, Zhang S. Utilization of Molybdenum Tailings in Concrete Manufacturing: A Review. Appl Sci 2020; 10(1):138.
  • Kasımzade AA. Finite Element Method Fundamentals and Applications in Structural Mechanics, Ankara, Turkey: Nobel Academic Publishing, 2018.
  • Kasımzade AA. Structural Design and Analysis in The Light of Current Regulations with SAP2000 on The Basis of FEM, Ankara, Turkey: Nobel Academic Publishing, 2021.
  • Ziada M, Tuhta S, Gençbay E. H, Günday F, Tammam Y. Analysis of Tunnel Form Building Retrofitted with CFRP using Finite Element Method. Int J Trend Res Dev 2019; 3(2): 822–826.
  • Tuhta S, Günday F, Alihassan A. The Effect of CFRP Reinforced Concrete Chimney on Modal Parameters Using Finite Element Method. Int J Innov Eng Technol 2020; 7(2): 1–6.
  • Bakkour F, Tuhta S, Günday F. Determination of Modal Parameters of Reinforced Concrete Box Culvert Retrofitted with GFRP Using Finite Element Method. Int J Innov Eng Technol 2022; 9(4): 1–9.
  • Hammoud MA, Tuhta S, Günday F. Determination of Modal Parameters of Reinforced Concrete Tunnel Retrofitted with CFRP using Finite Element Method. Int J Innov Eng Technol 2022; 9(4): 10–18.
There are 28 citations in total.

Details

Primary Language English
Subjects Steel Structures
Journal Section TJST
Authors

Furkan Günday 0000-0003-2979-9373

Publication Date September 1, 2023
Submission Date February 25, 2023
Published in Issue Year 2023

Cite

APA Günday, F. (2023). The Effect of Using Molybdenum Profile in Columns of Steel Building Models on The Modal Parameters. Turkish Journal of Science and Technology, 18(2), 415-424. https://doi.org/10.55525/tjst.1256534
AMA Günday F. The Effect of Using Molybdenum Profile in Columns of Steel Building Models on The Modal Parameters. TJST. September 2023;18(2):415-424. doi:10.55525/tjst.1256534
Chicago Günday, Furkan. “The Effect of Using Molybdenum Profile in Columns of Steel Building Models on The Modal Parameters”. Turkish Journal of Science and Technology 18, no. 2 (September 2023): 415-24. https://doi.org/10.55525/tjst.1256534.
EndNote Günday F (September 1, 2023) The Effect of Using Molybdenum Profile in Columns of Steel Building Models on The Modal Parameters. Turkish Journal of Science and Technology 18 2 415–424.
IEEE F. Günday, “The Effect of Using Molybdenum Profile in Columns of Steel Building Models on The Modal Parameters”, TJST, vol. 18, no. 2, pp. 415–424, 2023, doi: 10.55525/tjst.1256534.
ISNAD Günday, Furkan. “The Effect of Using Molybdenum Profile in Columns of Steel Building Models on The Modal Parameters”. Turkish Journal of Science and Technology 18/2 (September 2023), 415-424. https://doi.org/10.55525/tjst.1256534.
JAMA Günday F. The Effect of Using Molybdenum Profile in Columns of Steel Building Models on The Modal Parameters. TJST. 2023;18:415–424.
MLA Günday, Furkan. “The Effect of Using Molybdenum Profile in Columns of Steel Building Models on The Modal Parameters”. Turkish Journal of Science and Technology, vol. 18, no. 2, 2023, pp. 415-24, doi:10.55525/tjst.1256534.
Vancouver Günday F. The Effect of Using Molybdenum Profile in Columns of Steel Building Models on The Modal Parameters. TJST. 2023;18(2):415-24.