Research Article
BibTex RIS Cite

Sulu Çözeltide Arseniğin Nanokompozit Tabanlı Elektrokimyasal Algılanmasının Geliştirilmesi

Year 2023, , 503 - 510, 01.09.2023
https://doi.org/10.55525/tjst.1341662

Abstract

İçme sularının ağır metallerle kirlenmesi, küresel çevre ve halk sağlığı için ciddi tehdit oluşturmaktadır. Şu anda yaklaşık 20 ülkede içme suyunda bulunan ve EPA yönergelerinden daha yüksek arsenik seviyeleri rapor edilmiştir. Arsenik oldukça zehirlidir, geniş çapta dağılmıştır ve yer kabuğunda bulunur. Suda hem organik hem de inorganik formda bulunur. Arseniğin çevreye salınım kaynakları, endüstriyel atıklar, pestisitler, odun koruyucu maddeler, fosil yakıtların yanması ve madencilik faaliyetleri yoluyla farklı şekillerde ortaya çıkmaktadır. Şu anda Arsenik, endüktif olarak eşleşmiş plazma kütle spektrometrisi (ICPMS), grafit fırınlı atomik absorpsiyon spektrometrisi (GFAAS) ve ICPMS'li yüksek performanslı sıvı kromatografisi (HPLC) dahil olmak üzere çok çeşitli yöntemler kullanılarak belirlenmektedir. Bununla birlikte, bu yöntemler yavaş, pahalıdır ve çalışması için yetenekli insanlar gerektirir. Alternatif olarak, elektrokimyasal sensörler, çok düşük konsantrasyonlarda ağır metallerin tespiti için potansiyel olarak güçlü bir analitik teknik olarak kabul edilmiştir. Ayrıca ağır metallerin yerinde ve sürekli olarak izlenmesine olanak tanır. Bu çalışmada, ciddi çevre ve sağlık sorunlarına neden olan Arsenik'in tespiti için altın nanopartikül ve iletken polimerlerden (polidiallildimetilamonyum klorür (PDDA) ve polistiren sülfonat (PSS)) işlevselleştirilmiş grafenden yapılmış bir nanokompozit kullanılmıştır.

References

  • Chakraborti D, Rahman MM, Mukherjee A, et al. Groundwater arsenic contamination in Bangladesh-21 Years of research. J Trace Elem Med Biol. 2015;31:237-248.
  • Fisher AT, López-Carrillo L, Gamboa-Loira B, Cebrián ME. Standards for arsenic in drinking water: Implications for policy in Mexico. J Public Health Policy. 2017;38(4):395-406.
  • Assirelli A, Ieffa S, Bernasconi R, Nobili L, Magagnin L. Graphene Based Materials for Arsenic Sensing and Removal from Contaminated Water. ECS Meet Abstr. 2015;MA2015-01(40):2127-2127.
  • Udayan APM, Kachwala B, Karthikeyan KG, Gunasekaran S. Ultrathin quasi-hexagonal gold nanostructures for sensing arsenic in tap water. RSC Adv. 2020;10(34):20211-20221.
  • Colliver TL, Ewing AG. Neurotransmitters, Electrochemical Detection of. Encycl Anal Chem. 2000:1-25.
  • Wuana RA, Okieimen FE. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011;2011:1-20.
  • Dai X, Nekraseova O, Hyde ME, Compton RG. Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes. Anal Chem. 2004;76(19):5924-5929.
  • Domínguez-González R, González Varela L, Bermejo-Barrera P. Functionalized gold nanoparticles for the detection of arsenic in water. Talanta. 2014;118:262-269.
  • Toor SK, Devi P, Bansod BKS. Electrochemical Detection of Trace Amount of Arsenic (III) at Glassy Carbon Electrode Modified with Au/Fe3O4 Nanocomposites. Aquat Procedia. 2015;4:1107-1113.
  • Piech R, Kubiak WW. Determination of trace arsenic with DDTC-Na by cathodic stripping voltammetry in presence of copper ions. J Electroanal Chem. 2007;599(1):59-64.
  • Profumo A, Merli D, Pesavento M. Voltammetric determination of inorganic As(III) and total inorganic As in natural waters. Anal Chim Acta. 2005;539(1-2):245-250.
  • Rao Y, Li RH, Zhang DQ. A drug from poison: How the therapeutic effect of arsenic trioxide on acute promyelocytic leukemia was discovered. Sci China Life Sci. 2013;56(6):495-502.
  • Forsberg G, O’Laughlin JW, Megargle RG, Koirtyohann SR. Determination of Arsenic by Anodic Stripping Voltammetry and Differential Pulse Anodic Stripping Voltammetry. Anal Chem. 1975;47(9):1586-1592.
  • Kato D, Kamata T, Kato D, Yanagisawa H, Niwa O. Au Nanoparticle-Embedded Carbon Films for Electrochemical As3+ Detection with High Sensitivity and Stability. Anal Chem. 2016;88(5):2944-2951.
  • Cinti S, Politi S, Moscone D, Palleschi G, Arduini F. Stripping Analysis of As(III) by means of screen-printed electrodes modified with gold nanoparticles and carbon black nanocomposite. Electroanalysis. 2014;26(5):931-939.
  • Laschi S, Bagni G, Palchetti I, Mascini M. As(III) voltammetric detection by means of disposable screen-printed gold electrochemical sensors. Anal Lett. 2007;40(16):3002-3013.
  • Niu X, Lan M, Zhao H, Chen C, Li Y, Zhu X. Review: Electrochemical Stripping Analysis of Trace Heavy Metals Using Screen-Printed Electrodes. Anal Lett. 2013;46(16):2479-2502.
  • Li C. Determination of Arsenic in Water by Potentially Portable Methodology. 2013.
  • Mays DE, Hussam A. Voltammetric methods for determination and speciation of inorganic arsenic in the environment-A review. Anal Chim Acta. 2009;646(1-2):6-16.
  • Nadeau JL. Synthesis of Gold Nanoparticles /. Introd to Exp Biophys - A Lab Guid. 2020:154-159.
  • Sadak O, Sundramoorthy AK, Gunasekaran S. Highly selective colorimetric and electrochemical sensing of iron (III) using Nile red functionalized graphene film. Biosens Bioelectron. 2017;89:430-436.
  • Sadak O, Sundramoorthy AK, Gunasekaran S. Facile and green synthesis of highly conductive graphene paper. Carbon N Y. 2018;138:108-117.
  • Sadak O. One-pot scalable synthesis of rGO/AuNPs nanocomposite and its application in enzymatic glucose biosensor. Nanocomposites. 2021;7(1):44-52.
  • Sadak O, Wang W, Guan J, Sundramoorthy AK, Gunasekaran S. MnO2 Nanoflowers Deposited on Graphene Paper as Electrode Materials for Supercapacitors. ACS Appl Nano Mater. 2019;2(12):4386-4394.
  • Ahn J, Boroje IJ, Ferdosi H, Kramer ZJ, Lamm SH. Prostate cancer incidence in U.S. counties and low levels of arsenic in drinking water. Int J Environ Res Public Health. 2020;17(3).

Development of a Nanocomposite-Based Electrochemical Sensing of Arsenic in Aqueous Solution

Year 2023, , 503 - 510, 01.09.2023
https://doi.org/10.55525/tjst.1341662

Abstract

Contamination of drinking water with heavy metals is a serious threat to the global environment and public health. Currently, approximately 20 countries have been reported for arsenic levels present in drinking water that are higher than the EPA guidelines. Arsenic is highly toxic, widely dispersed and found in the earth’s crust. It can be found in inorganic as well as organic compounds in water. Arsenic is released into the environment in a variety of ways, including industrial effluents, pesticides, wood preservative chemicals, combustion of petroleum and coal, and mining operations. Currently, Arsenic is determined using a wide variety of methods that include inductively coupled plasma mass spectrometry (ICPMS), high-performance liquid chromatography (HPLC) with ICPMS and graphite furnace atomic absorption spectrometry (GFAAS). Nevertheless, these methods are slow, expensive and require skilled people to operate. Alternatively, electrochemical sensors have been potentially recognized as a powerful analytical method for the detection of heavy metals at very low concentrations. It also allows on-site and continuous monitoring of heavy metals. A nanocomposite consisting of gold nanoparticles and conducting polymers (polydiallyldimethylammonium chloride (PDDA) and polystyrene sulfonate (PSS)) functionalized graphene was used in this study to detect arsenic, which causes major environmental and health concerns.

References

  • Chakraborti D, Rahman MM, Mukherjee A, et al. Groundwater arsenic contamination in Bangladesh-21 Years of research. J Trace Elem Med Biol. 2015;31:237-248.
  • Fisher AT, López-Carrillo L, Gamboa-Loira B, Cebrián ME. Standards for arsenic in drinking water: Implications for policy in Mexico. J Public Health Policy. 2017;38(4):395-406.
  • Assirelli A, Ieffa S, Bernasconi R, Nobili L, Magagnin L. Graphene Based Materials for Arsenic Sensing and Removal from Contaminated Water. ECS Meet Abstr. 2015;MA2015-01(40):2127-2127.
  • Udayan APM, Kachwala B, Karthikeyan KG, Gunasekaran S. Ultrathin quasi-hexagonal gold nanostructures for sensing arsenic in tap water. RSC Adv. 2020;10(34):20211-20221.
  • Colliver TL, Ewing AG. Neurotransmitters, Electrochemical Detection of. Encycl Anal Chem. 2000:1-25.
  • Wuana RA, Okieimen FE. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011;2011:1-20.
  • Dai X, Nekraseova O, Hyde ME, Compton RG. Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes. Anal Chem. 2004;76(19):5924-5929.
  • Domínguez-González R, González Varela L, Bermejo-Barrera P. Functionalized gold nanoparticles for the detection of arsenic in water. Talanta. 2014;118:262-269.
  • Toor SK, Devi P, Bansod BKS. Electrochemical Detection of Trace Amount of Arsenic (III) at Glassy Carbon Electrode Modified with Au/Fe3O4 Nanocomposites. Aquat Procedia. 2015;4:1107-1113.
  • Piech R, Kubiak WW. Determination of trace arsenic with DDTC-Na by cathodic stripping voltammetry in presence of copper ions. J Electroanal Chem. 2007;599(1):59-64.
  • Profumo A, Merli D, Pesavento M. Voltammetric determination of inorganic As(III) and total inorganic As in natural waters. Anal Chim Acta. 2005;539(1-2):245-250.
  • Rao Y, Li RH, Zhang DQ. A drug from poison: How the therapeutic effect of arsenic trioxide on acute promyelocytic leukemia was discovered. Sci China Life Sci. 2013;56(6):495-502.
  • Forsberg G, O’Laughlin JW, Megargle RG, Koirtyohann SR. Determination of Arsenic by Anodic Stripping Voltammetry and Differential Pulse Anodic Stripping Voltammetry. Anal Chem. 1975;47(9):1586-1592.
  • Kato D, Kamata T, Kato D, Yanagisawa H, Niwa O. Au Nanoparticle-Embedded Carbon Films for Electrochemical As3+ Detection with High Sensitivity and Stability. Anal Chem. 2016;88(5):2944-2951.
  • Cinti S, Politi S, Moscone D, Palleschi G, Arduini F. Stripping Analysis of As(III) by means of screen-printed electrodes modified with gold nanoparticles and carbon black nanocomposite. Electroanalysis. 2014;26(5):931-939.
  • Laschi S, Bagni G, Palchetti I, Mascini M. As(III) voltammetric detection by means of disposable screen-printed gold electrochemical sensors. Anal Lett. 2007;40(16):3002-3013.
  • Niu X, Lan M, Zhao H, Chen C, Li Y, Zhu X. Review: Electrochemical Stripping Analysis of Trace Heavy Metals Using Screen-Printed Electrodes. Anal Lett. 2013;46(16):2479-2502.
  • Li C. Determination of Arsenic in Water by Potentially Portable Methodology. 2013.
  • Mays DE, Hussam A. Voltammetric methods for determination and speciation of inorganic arsenic in the environment-A review. Anal Chim Acta. 2009;646(1-2):6-16.
  • Nadeau JL. Synthesis of Gold Nanoparticles /. Introd to Exp Biophys - A Lab Guid. 2020:154-159.
  • Sadak O, Sundramoorthy AK, Gunasekaran S. Highly selective colorimetric and electrochemical sensing of iron (III) using Nile red functionalized graphene film. Biosens Bioelectron. 2017;89:430-436.
  • Sadak O, Sundramoorthy AK, Gunasekaran S. Facile and green synthesis of highly conductive graphene paper. Carbon N Y. 2018;138:108-117.
  • Sadak O. One-pot scalable synthesis of rGO/AuNPs nanocomposite and its application in enzymatic glucose biosensor. Nanocomposites. 2021;7(1):44-52.
  • Sadak O, Wang W, Guan J, Sundramoorthy AK, Gunasekaran S. MnO2 Nanoflowers Deposited on Graphene Paper as Electrode Materials for Supercapacitors. ACS Appl Nano Mater. 2019;2(12):4386-4394.
  • Ahn J, Boroje IJ, Ferdosi H, Kramer ZJ, Lamm SH. Prostate cancer incidence in U.S. counties and low levels of arsenic in drinking water. Int J Environ Res Public Health. 2020;17(3).
There are 25 citations in total.

Details

Primary Language English
Subjects Sensor Technology
Journal Section TJST
Authors

Ömer Sadak 0000-0001-6717-9672

Publication Date September 1, 2023
Submission Date August 11, 2023
Published in Issue Year 2023

Cite

APA Sadak, Ö. (2023). Development of a Nanocomposite-Based Electrochemical Sensing of Arsenic in Aqueous Solution. Turkish Journal of Science and Technology, 18(2), 503-510. https://doi.org/10.55525/tjst.1341662
AMA Sadak Ö. Development of a Nanocomposite-Based Electrochemical Sensing of Arsenic in Aqueous Solution. TJST. September 2023;18(2):503-510. doi:10.55525/tjst.1341662
Chicago Sadak, Ömer. “Development of a Nanocomposite-Based Electrochemical Sensing of Arsenic in Aqueous Solution”. Turkish Journal of Science and Technology 18, no. 2 (September 2023): 503-10. https://doi.org/10.55525/tjst.1341662.
EndNote Sadak Ö (September 1, 2023) Development of a Nanocomposite-Based Electrochemical Sensing of Arsenic in Aqueous Solution. Turkish Journal of Science and Technology 18 2 503–510.
IEEE Ö. Sadak, “Development of a Nanocomposite-Based Electrochemical Sensing of Arsenic in Aqueous Solution”, TJST, vol. 18, no. 2, pp. 503–510, 2023, doi: 10.55525/tjst.1341662.
ISNAD Sadak, Ömer. “Development of a Nanocomposite-Based Electrochemical Sensing of Arsenic in Aqueous Solution”. Turkish Journal of Science and Technology 18/2 (September 2023), 503-510. https://doi.org/10.55525/tjst.1341662.
JAMA Sadak Ö. Development of a Nanocomposite-Based Electrochemical Sensing of Arsenic in Aqueous Solution. TJST. 2023;18:503–510.
MLA Sadak, Ömer. “Development of a Nanocomposite-Based Electrochemical Sensing of Arsenic in Aqueous Solution”. Turkish Journal of Science and Technology, vol. 18, no. 2, 2023, pp. 503-10, doi:10.55525/tjst.1341662.
Vancouver Sadak Ö. Development of a Nanocomposite-Based Electrochemical Sensing of Arsenic in Aqueous Solution. TJST. 2023;18(2):503-10.