Research Article
BibTex RIS Cite

Optimization for Next Generation Wireless System Using Radio Over Fiber in Terms of Topology

Year 2017, Volume: 12 Issue: 2, 33 - 41, 01.10.2017

Abstract

This
dynamic execution of Radio over Fiber (RoF) joins utilizing minimal effort
optoelectronic parts are evaluated for dispersed receiving wire applications in
cutting edge remote frameworks. Vital configuration issues are examined and an
illustrated the outline is exhibited for a remote framework requiring the
transmission of four radio channels for every connection course.  Each of these channels has 100 MHz
transmission capacity, balance many-sided quality of 256-QAM and 2048 OFDM
subcarriers. The Radio Access Network (RAN) is using for all types of mobile
system, each of this RAN have a different topology such as star, circle, tree,
etc. On the other hand, to creating and using a new RAN is better to use mesh
topology which is suitable for the new system. In the same way, in the field of
using new RAN, topology can be apply as a mesh, which includes RoF. It also call
as next generation mobile system for the new system, instead of using microwave
it can use fiber optic that is why microwave are ignored. This type of use is
more useful in terms of quality and system optimization for 4G and similar
systems.

References

  • 1. Gawas, A.U. (2015). An Overview on Evolution of Mobile Wireless Communication Networks: 1G-6G, International Journal on Recent and Innovation Trends in Computing and Communication, 3(5): 3130 – 3133.
  • 2. Lee, D.W., Won, Y.Y. and Han, S.K. (2008). Bidirectional Gigabit Millimeter-wave Wavelength Division Multiplexed Radio over Fiber Link Using a Reflective Semiconductor Optical Amplifier. IEICE Transaction on Communications, E91-B(7): 2418- 2421.
  • 3. Al-Raweshidy, H. And Komaki, S. (2002). Radio Over Fiber Technologies for Mobile Communications Networks.
  • 4. Pooja, J., Saroj, B. and Manisha, B. (2015). Advantages and Limitation of Radio over Fiber System. International Journal of Computer Science and Mobile Computing, 4(5): 506-511.
  • 5. Lim, C., Nirmalathas, A., Bakaul, M., Gamage, P., Lee, K., Yang, Y., Novak, D. and Waterhouse, R. (2010). Fiber-Wireless Networks and Subsystem Technologies. Journal of Lightwave Technology, 28(4): 390-405.
  • 6. Vyas, A.K. and Agrawal, N. (2012). Radio over Fiber: Future Technology of Communication, International Journal of Emerging Trends & Technology in Computer Science (IJETTCS). 1(2): 233-237.
  • 7. Hamad-Ameen J.J. (2008). Cell Planning in GSM Mobile. WSEAS Transactions on Communication. 5(7): 393-398.
  • 8. Auguste, J.L., Blondy, J.M., Maury, J., Marcou, J., Dussardier, B., Monnom, G., Jindal, R., Thyagarajan, K. and Pal, B.P. (2002). Conception, Realization and Characterization of a Very High Negative Chromatic Dispersion Fiber. Optical Fiber Technology. 8(1): 89-105.
  • 9. Petersen, C.R., Moller, U., Kubat, I., Zhou, B., Dupont, S., Ramsay, J., Benson, T., Sujecki, S., Abdel-Moneim, N., Tang, Z., Furniss, D., Seddon, A. and Bang, O. (2014). Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre, Nature Photonics, 8(11): 830–834.
  • 10. Yabre, G. S. (2000). Comprehensive theory of dispersion in graded-index optical fibers. Journal of Lightwave Technology, 18(2): 166-177.
  • 11. Kaur, M. and Sarangal, H. (2015). Analysis on Dispersion Compensation with Dispersion Compensation Fiber (DCF). SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE), 2(2): 56-59.
Year 2017, Volume: 12 Issue: 2, 33 - 41, 01.10.2017

Abstract

References

  • 1. Gawas, A.U. (2015). An Overview on Evolution of Mobile Wireless Communication Networks: 1G-6G, International Journal on Recent and Innovation Trends in Computing and Communication, 3(5): 3130 – 3133.
  • 2. Lee, D.W., Won, Y.Y. and Han, S.K. (2008). Bidirectional Gigabit Millimeter-wave Wavelength Division Multiplexed Radio over Fiber Link Using a Reflective Semiconductor Optical Amplifier. IEICE Transaction on Communications, E91-B(7): 2418- 2421.
  • 3. Al-Raweshidy, H. And Komaki, S. (2002). Radio Over Fiber Technologies for Mobile Communications Networks.
  • 4. Pooja, J., Saroj, B. and Manisha, B. (2015). Advantages and Limitation of Radio over Fiber System. International Journal of Computer Science and Mobile Computing, 4(5): 506-511.
  • 5. Lim, C., Nirmalathas, A., Bakaul, M., Gamage, P., Lee, K., Yang, Y., Novak, D. and Waterhouse, R. (2010). Fiber-Wireless Networks and Subsystem Technologies. Journal of Lightwave Technology, 28(4): 390-405.
  • 6. Vyas, A.K. and Agrawal, N. (2012). Radio over Fiber: Future Technology of Communication, International Journal of Emerging Trends & Technology in Computer Science (IJETTCS). 1(2): 233-237.
  • 7. Hamad-Ameen J.J. (2008). Cell Planning in GSM Mobile. WSEAS Transactions on Communication. 5(7): 393-398.
  • 8. Auguste, J.L., Blondy, J.M., Maury, J., Marcou, J., Dussardier, B., Monnom, G., Jindal, R., Thyagarajan, K. and Pal, B.P. (2002). Conception, Realization and Characterization of a Very High Negative Chromatic Dispersion Fiber. Optical Fiber Technology. 8(1): 89-105.
  • 9. Petersen, C.R., Moller, U., Kubat, I., Zhou, B., Dupont, S., Ramsay, J., Benson, T., Sujecki, S., Abdel-Moneim, N., Tang, Z., Furniss, D., Seddon, A. and Bang, O. (2014). Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre, Nature Photonics, 8(11): 830–834.
  • 10. Yabre, G. S. (2000). Comprehensive theory of dispersion in graded-index optical fibers. Journal of Lightwave Technology, 18(2): 166-177.
  • 11. Kaur, M. and Sarangal, H. (2015). Analysis on Dispersion Compensation with Dispersion Compensation Fiber (DCF). SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE), 2(2): 56-59.
There are 11 citations in total.

Details

Journal Section TJST
Authors

Shwan Asaad Othman Othman This is me

İbrahim Türkoğlu

Publication Date October 1, 2017
Submission Date September 28, 2017
Published in Issue Year 2017 Volume: 12 Issue: 2

Cite

APA Othman, S. A. O., & Türkoğlu, İ. (2017). Optimization for Next Generation Wireless System Using Radio Over Fiber in Terms of Topology. Turkish Journal of Science and Technology, 12(2), 33-41.
AMA Othman SAO, Türkoğlu İ. Optimization for Next Generation Wireless System Using Radio Over Fiber in Terms of Topology. TJST. October 2017;12(2):33-41.
Chicago Othman, Shwan Asaad Othman, and İbrahim Türkoğlu. “Optimization for Next Generation Wireless System Using Radio Over Fiber in Terms of Topology”. Turkish Journal of Science and Technology 12, no. 2 (October 2017): 33-41.
EndNote Othman SAO, Türkoğlu İ (October 1, 2017) Optimization for Next Generation Wireless System Using Radio Over Fiber in Terms of Topology. Turkish Journal of Science and Technology 12 2 33–41.
IEEE S. A. O. Othman and İ. Türkoğlu, “Optimization for Next Generation Wireless System Using Radio Over Fiber in Terms of Topology”, TJST, vol. 12, no. 2, pp. 33–41, 2017.
ISNAD Othman, Shwan Asaad Othman - Türkoğlu, İbrahim. “Optimization for Next Generation Wireless System Using Radio Over Fiber in Terms of Topology”. Turkish Journal of Science and Technology 12/2 (October 2017), 33-41.
JAMA Othman SAO, Türkoğlu İ. Optimization for Next Generation Wireless System Using Radio Over Fiber in Terms of Topology. TJST. 2017;12:33–41.
MLA Othman, Shwan Asaad Othman and İbrahim Türkoğlu. “Optimization for Next Generation Wireless System Using Radio Over Fiber in Terms of Topology”. Turkish Journal of Science and Technology, vol. 12, no. 2, 2017, pp. 33-41.
Vancouver Othman SAO, Türkoğlu İ. Optimization for Next Generation Wireless System Using Radio Over Fiber in Terms of Topology. TJST. 2017;12(2):33-41.